找回密码
 注册创意安天

数学之美 (转帖自google黑板报 www.googlechinablog.com)

[复制链接]
发表于 2010-1-20 18:57 | 显示全部楼层

数学之美 系列十六(上) 不要把所有的鸡蛋放在一个篮子里 -- 谈谈最大熵模型

数学之美 系列十六(上) 不要把所有的鸡蛋放在一个篮子里 -- 谈谈最大熵模型
10/08/2006 07:27:00 上午

发表者:Google 研究员,吴军

[我们在投资时常常讲不要把所有的鸡蛋放在一个篮子里,这样可以降低风险。在信息处理中,这个原理同样适用。在数学上,这个原理称为最大熵原理(the maximum entropy principle)。这是一个非常有意思的题目,但是把它讲清楚要用两个系列的篇幅。]

前段时间,Google 中国研究院的刘骏总监谈到在网络搜索排名中,用到的信息有上百种。更普遍地讲,在自然语言处理中,我们常常知道各种各样的但是又不完全确定的信息,我们需要用一个统一的模型将这些信息综合起来。如何综合得好,是一门很大的学问。

让我们看一个拼音转汉字的简单的例子。假如输入的拼音是"wang-xiao-bo",利用语言模型,根据有限的上下文(比如前两个词),我们能给出两个最常见的名字“王小波”和“王晓波”。至于要唯一确定是哪个名字就难了,即使利用较长的上下文也做不到。当然,我们知道如果通篇文章是介绍文学的,作家王小波的可能性就较大;而在讨论两岸关系时,台湾学者王晓波的可能性会较大。在上面的例子中,我们只需要综合两类不同的信息,即主题信息和上下文信息。虽然有不少凑合的办法,比如:分成成千上万种的不同的主题单独处理,或者对每种信息的作用加权平均等等,但都不能准确而圆满地解决问题,这样好比以前我们谈到的行星运动模型中的小圆套大圆打补丁的方法。在很多应用中,我们需要综合几十甚至上百种不同的信息,这种小圆套大圆的方法显然行不通。

数学上最漂亮的办法是最大熵(maximum entropy)模型,它相当于行星运动的椭圆模型。“最大熵”这个名词听起来很深奥,但是它的原理很简单,我们每天都在用。说白了,就是要保留全部的不确定性,将风险降到最小。让我们来看一个实际例子。

有一次,我去 AT&T 实验室作关于最大熵模型的报告,我带去了一个色子。我问听众“每个面朝上的概率分别是多少”,所有人都说是等概率,即各点的概率均为1/6。这种猜测当然是对的。我问听众们为什么,得到的回答是一致的:对这个“一无所知”的色子,假定它每一个朝上概率均等是最安全的做法。(你不应该主观假设它象韦小宝的色子一样灌了铅。)从投资的角度看,就是风险最小的做法。从信息论的角度讲,就是保留了最大的不确定性,也就是说让熵达到最大。接着,我又告诉听众,我的这个色子被我特殊处理过,已知四点朝上的概率是三分之一,在这种情况下,每个面朝上的概率是多少?这次,大部分人认为除去四点的概率是 1/3,其余的均是 2/15,也就是说已知的条件(四点概率为 1/3)必须满足,而对其余各点的概率因为仍然无从知道,因此只好认为它们均等。注意,在猜测这两种不同情况下的概率分布时,大家都没有添加任何主观的假设,诸如四点的反面一定是三点等等。(事实上,有的色子四点反面不是三点而是一点。)这种基于直觉的猜测之所以准确,是因为它恰好符合了最大熵原理。

最大熵原理指出,当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设。(不做主观假设这点很重要。)在这种情况下,概率分布最均匀,预测的风险最小。因为这时概率分布的信息熵最大,所以人们称这种模型叫“最大熵模型”。我们常说,不要把所有的鸡蛋放在一个篮子里,其实就是最大熵原理的一个朴素的说法,因为当我们遇到不确定性时,就要保留各种可能性。

回到我们刚才谈到的拼音转汉字的例子,我们已知两种信息,第一,根据语言模型,wang-xiao-bo 可以被转换成王晓波和王小波;第二,根据主题,王小波是作家,《黄金时代》的作者等等,而王晓波是台湾研究两岸关系的学者。因此,我们就可以建立一个最大熵模型,同时满足这两种信息。现在的问题是,这样一个模型是否存在。匈牙利著名数学家、信息论最高奖香农奖得主希萨(Csiszar)证明,对任何一组不自相矛盾的信息,这个最大熵模型不仅存在,而且是唯一的。而且它们都有同一个非常简单的形式 -- 指数函数。下面公式是根据上下文(前两个词)和主题预测下一个词的最大熵模型,其中 w3 是要预测的词(王晓波或者王小波)w1 和 w2 是它的前两个字(比如说它们分别是“出版”,和“”),也就是其上下文的一个大致估计,subject 表示主题。



我们看到,在上面的公式中,有几个参数 lambda 和 Z ,他们需要通过观测数据训练出来。

最大熵模型在形式上是最漂亮的统计模型,而在实现上是最复杂的模型之一。我们在将下一个系列中介绍如何训练最大熵模型的诸多参数,以及最大熵模型在自然语言处理和金融方面很多有趣的应用。
回复

使用道具 举报

发表于 2010-1-20 18:57 | 显示全部楼层

数学之美 系列十六 (下)- 不要把所有的鸡蛋放在一个篮子里 最大熵模型

数学之美 系列十六 (下)- 不要把所有的鸡蛋放在一个篮子里 最大熵模型
11/16/2006 06:50:00 上午

发表者:Google 研究员,吴军

我们上次谈到用最大熵模型可以将各种信息综合在一起。我们留下一个问题没有回答,就是如何构造最大熵模型。我们已经所有的最大熵模型都是指数函数的形式,现在只需要确定指数函数的参数就可以了,这个过程称为模型的训练。

最原始的最大熵模型的训练方法是一种称为通用迭代算法 GIS(generalized iterative scaling) 的迭代 算法。GIS 的原理并不复杂,大致可以概括为以下几个步骤:
1. 假定第零次迭代的初始模型为等概率的均匀分布。
2. 用第 N 次迭代的模型来估算每种信息特征在训练数据中的分布,如果超过了实际的,就把相应的模型参数变小;否则,将它们便大。
3. 重复步骤 2 直到收敛。

GIS 最早是由 Darroch 和 Ratcliff 在七十年代提出的。但是,这两人没有能对这种算法的物理含义进行很好地解释。后来是由数学家希萨(Csiszar)解释清楚的,因此,人们在谈到这个算法时,总是同时引用 Darroch 和Ratcliff 以及希萨的两篇论文。GIS 算法每次迭代的时间都很长,需要迭代很多次才能收敛,而且不太稳定,即使在 64 位计算机上都会出现溢出。因此,在实际应用中很少有人真正使用 GIS。大家只是通过它来了解最大熵模型的算法。

八十年代,很有天才的孪生兄弟的达拉皮垂(Della Pietra)在 IBM 对 GIS 算法进行了两方面的改进,提出了改进迭代算法 IIS(improved iterative scaling)。这使得最大熵模型的训练时间缩短了一到两个数量级。这样最大熵模型才有可能变得实用。即使如此,在当时也只有 IBM 有条件是用最大熵模型。

由于最大熵模型在数学上十分完美,对科学家们有很大的诱惑力,因此不少研究者试图把自己的问题用一个类似最大熵的近似模型去套。谁知这一近似,最大熵模型就变得不完美了,结果可想而知,比打补丁的凑合的方法也好不了多少。于是,不少热心人又放弃了这种方法。第一个在实际信息处理应用中验证了最大熵模型的优势的,是宾夕法尼亚大学马库斯的另一个高徒原 IBM 现微软的研究员拉纳帕提(Adwait Ratnaparkhi)。拉纳帕提的聪明之处在于他没有对最大熵模型进行近似,而是找到了几个最适合用最大熵模型、而计算量相对不太大的自然语言处理问题,比如词性标注和句法分析。拉纳帕提成功地将上下文信息、词性(名词、动词和形容词等)、句子成分(主谓宾)通过最大熵模型结合起来,做出了当时世界上最好的词性标识系统和句法分析器。拉纳帕提的论文发表后让人们耳目一新。拉纳帕提的词性标注系统,至今仍然是使用单一方法最好的系统。科学家们从拉纳帕提的成就中,又看到了用最大熵模型解决复杂的文字信息处理的希望。

但是,最大熵模型的计算量仍然是个拦路虎。我在学校时花了很长时间考虑如何简化最大熵模型的计算量。终于有一天,我对我的导师说,我发现一种数学变换,可以将大部分最大熵模型的训练时间在 IIS 的基础上减少两个数量级。我在黑板上推导了一个多小时,他没有找出我的推导中的任何破绽,接着他又回去想了两天,然后告诉我我的算法是对的。从此,我们就建造了一些很大的最大熵模型。这些模型比修修补补的凑合的方法好不少。即使在我找到了快速训练算法以后,为了训练一个包含上下文信息,主题信息和语法信息的文法模型(language model),我并行使用了 20 台当时最快的 SUN 工作站,仍然计算了三个月。由此可见最大熵模型的复杂的一面。最大熵模型快速算法的实现很复杂,到今天为止,世界上能有效实现这些算法的人也不到一百人。有兴趣实现一个最大熵模型的读者可以阅读我的论文。

最大熵模型,可以说是集简与繁于一体,形式简单,实现复杂。值得一提的是,在Google的很多产品中,比如机器翻译,都直接或间接地用到了最大熵模型。

讲到这里,读者也许会问,当年最早改进最大熵模型算法的达拉皮垂兄弟这些年难道没有做任何事吗?他们在九十年代初贾里尼克离开 IBM 后,也退出了学术界,而到在金融界大显身手。他们两人和很多 IBM 语音识别的同事一同到了一家当时还不大,但现在是世界上最成功对冲基金(hedge fund)公司----文艺复兴技术公司 (Renaissance Technologies)。我们知道,决定股票涨落的因素可能有几十甚至上百种,而最大熵方法恰恰能找到一个同时满足成千上万种不同条件的模型。达拉皮垂兄弟等科学家在那里,用于最大熵模型和其他一些先进的数学工具对股票预测,获得了巨大的成功。从该基金 1988 年创立至今,它的净回报率高达平均每年 34%。也就是说,如果 1988 年你在该基金投入一块钱,今天你能得到 200 块钱。这个业绩,远远超过股神巴菲特的旗舰公司伯克夏哈撒韦(Berkshire Hathaway)。同期,伯克夏哈撒韦的总回报是 16 倍。

值得一提的是,信息处理的很多数学手段,包括隐含马尔可夫模型、子波变换、贝叶斯网络等等,在华尔街多有直接的应用。由此可见,数学模型的作用。
回复

使用道具 举报

发表于 2010-1-20 18:59 | 显示全部楼层

数学之美 系列十七 闪光的不一定是金子 谈谈搜索引擎作弊问题

数学之美 系列十七 闪光的不一定是金子 谈谈搜索引擎作弊问题(Search Engine Anti-SPAM)
11/28/2006 03:18:00 上午

Google 研究员 吴军

自从有了搜索引擎,就有了针对搜索引擎网页排名的作弊(SPAM)。以至于用户发现在搜索引擎中排名靠前的网页不一定就是高质量的,用句俗话说,闪光的不一定是金子。


搜索引擎的作弊,虽然方法很多,目的只有一个,就是采用不正当手段提高自己网页的排名。早期最常见的作弊方法是重复关键词。比如一个卖数码相机的网站,重复地罗列各种数码相机的品牌,如尼康、佳能和柯达等等。为了不让读者看到众多讨厌的关键词,聪明一点的作弊者常用很小的字体和与背景相同的颜色来掩盖这些关键词。其实,这种做法很容易被搜索引擎发现并纠正。

在有了网页排名(page rank)以后,作弊者发现一个网页被引用的连接越多,排名就可能越靠前,于是就有了专门卖链接和买链接的生意。比如,有人自己创建成百上千个网站,这些网站上没有实质的内容,只有到他们的客户网站的连接。这种做法比重复关键词要高明得多,但是还是不太难被发现。因为那些所谓帮别人提高排名的网站,为了维持生意需要大量地卖链接,所以很容易露马脚。(这就如同造假钞票,当某一种假钞票的流通量相当大以后,就容易找到根源了。)再以后,又有了形形色色的作弊方式,我们就不在这里一一赘述了。

几年前,我加入Google做的第一件事就是消除网络作弊。在Google最早发现搜索引擎作弊的是Matt Cutts,他在我加入Google前几个月开始研究这个问题,后来,辛格,马丁和我先后加入进来。我们经过几个月的努力,清除了一半的作弊者。(当然,以后抓作弊的效率就不会有这么高了。)其中一部分网站从此"痛改前非",但是还是有很多网站换一种作弊方法继续作弊,因此,抓作弊成了一种长期的猫捉老鼠的游戏。虽然至今还没有一个一劳永逸地解决作弊问题的方法,但是,Google基本做到了对于任何已知的作弊方法,在一定时间内发现并清除它,从而总是将作弊的网站的数量控制在一个很小的比例范围。

抓作弊的方法很像信号处理中的去噪音的办法。学过信息论和有信号处理经验的读者可能知道这么一个事实,我们如果在发动机很吵的汽车里用手机打电话,对方可能听不清;但是如果我们知道了汽车发动机的频率,我们可以加上一个和发动机噪音相反的信号,很容易地消除发动机的噪音,这样,收话人可以完全听不到汽车的噪音。事实上,现在一些高端的手机已经有了这种检测和消除噪音的功能。消除噪音的流程可以概括如下:

在图中,原始的信号混入了噪音,在数学上相当于两个信号做卷积。噪音消除的过程是一个解卷积的过程。这在信号处理中并不是什么难题。因为第一,汽车发动机的频率是固定的,第二,这个频率的噪音重复出现,只要采集几秒钟的信号进行处理就能做到。从广义上讲,只要噪音不是完全随机的、并且前后有相关性,就可以检测到并且消除。(事实上,完全随机不相关的高斯白噪音是很难消除的。)

搜索引擎的作弊者所作的事,就如同在手机信号中加入了噪音,使得搜索结果的排名完全乱了。但是,这种人为加入的噪音并不难消除,因为作弊者的方法不可能是随机的(否则就无法提高排名了)。而且,作弊者也不可能是一天换一种方法,即作弊方法是时间相关的。因此,搞搜索引擎排名算法的人,可以在搜集一段时间的作弊信息后,将作弊者抓出来,还原原有的排名。当然这个过程需要时间,就如同采集汽车发动机噪音需要时间一样,在这段时间内,作弊者可能会尝到些甜头。因此,有些人看到自己的网站经过所谓的优化(其实是作弊),排名在短期内靠前了,以为这种所谓的优化是有效的。但是,不久就会发现排名掉下去了很多。这倒不是搜索引擎以前宽容,现在严厉了,而是说明抓作弊需要一定的时间,以前只是还没有检测到这些作弊的网站而已。

还要强调一点,Google抓作弊和恢复网站原有排名的过程完全是自动的(并没有个人的好恶),就如同手机消除噪音是自动的一样。一个网站要想长期排名靠前,就需要把内容做好,同时要和那些作弊网站划清界限。
回复

使用道具 举报

发表于 2010-1-20 19:00 | 显示全部楼层

数学之美 系列十八 - 矩阵运算和文本处理中的分类问题

数学之美 系列十八 - 矩阵运算和文本处理中的分类问题
1/01/2007 03:10:00 下午

发表者:Google 研究员,吴军

我在大学学习线性代数时,实在想不出它除了告诉我们如何解线性方程外,还能有什么别的用途。关于矩阵的许多概念,比如特征值等等,更是脱离日常生活。后来在数值分析中又学了很多矩阵的近似算法,还是看不到可以应用的地方。当时选这些课,完全是为了混学分的学位。我想,很多同学都多多少少有过类似的经历。直到后来长期做自然语言处理的研究,我才发现数学家们提出那些矩阵的概念和算法,是有实际应用的意义的。

在自然语言处理中,最常见的两类的分类问题分别是,将文本按主题归类(比如将所有介绍亚运会的新闻归到体育类)和将词汇表中的字词按意思归类(比如将各种体育运动的名称个归成一类)。这两种分类问题都可用通过矩阵运算来圆满地、同时解决。为了说明如何用矩阵这个工具类解决这两个问题的,让我们先来来回顾一下我们在余弦定理和新闻分类中介绍的方法。

分类的关键是计算相关性。我们首先对两个文本计算出它们的内容词,或者说实词的向量,然后求这两个向量的夹角。当这两个向量夹角为零时,新闻就相关;当它们垂直或者说正交时,新闻则无关。当然,夹角的余弦等同于向量的内积。从理论上讲,这种算法非常好。但是计算时间特别长。通常,我们要处理的文章的数量都很大,至少在百万篇以上,二次回标有非常长,比如说有五十万个词(包括人名地名产品名称等等)。如果想通过对一百万篇文章两篇两篇地成对比较,来找出所有共同主题的文章,就要比较五千亿对文章。现在的计算机一秒钟最多可以比较一千对文章,完成这一百万篇文章相关性比较就需要十五年时间。注意,要真正完成文章的分类还要反复重复上述计算。

在文本分类中,另一种办法是利用矩阵运算中的奇异值分解(Singular Value Decomposition,简称 SVD)。现在让我们来看看奇异值分解是怎么回事。首先,我们可以用一个大矩阵A来描述这一百万篇文章和五十万词的关联性。这个矩阵中,每一行对应一篇文章,每一列对应一个词。



在上面的图中,M=1,000,000,N=500,000。第 i 行,第 j 列的元素,是字典中第 j 个词在第 i 篇文章中出现的加权词频(比如,TF/IDF)。读者可能已经注意到了,这个矩阵非常大,有一百万乘以五十万,即五千亿个元素。

奇异值分解就是把上面这样一个大矩阵,分解成三个小矩阵相乘,如下图所示。比如把上面的例子中的矩阵分解成一个一百万乘以一百的矩阵X,一个一百乘以一百的矩阵B,和一个一百乘以五十万的矩阵Y。这三个矩阵的元素总数加起来也不过1.5亿,仅仅是原来的三千分之一。相应的存储量和计算量都会小三个数量级以上。



三个矩阵有非常清楚的物理含义。第一个矩阵X中的每一行表示意思相关的一类词,其中的每个非零元素表示这类词中每个词的重要性(或者说相关性),数值越大越相关。最后一个矩阵Y中的每一列表示同一主题一类文章,其中每个元素表示这类文章中每篇文章的相关性。中间的矩阵则表示类词和文章雷之间的相关性。因此,我们只要对关联矩阵A进行一次奇异值分解,w 我们就可以同时完成了近义词分类和文章的分类。(同时得到每类文章和每类词的相关性)。

现在剩下的唯一问题,就是如何用计算机进行奇异值分解。这时,线性代数中的许多概念,比如矩阵的特征值等等,以及数值分析的各种算法就统统用上了。在很长时间内,奇异值分解都无法并行处理。(虽然 Google 早就有了MapReduce 等并行计算的工具,但是由于奇异值分解很难拆成不相关子运算,即使在 Google 内部以前也无法利用并行计算的优势来分解矩阵。)最近,Google 中国的张智威博士和几个中国的工程师及实习生已经实现了奇异值分解的并行算法,我认为这是 Google 中国对世界的一个贡献。
回复

使用道具 举报

发表于 2010-1-20 19:00 | 显示全部楼层

数学之美 系列十九 - 马尔可夫链的扩展 贝叶斯网络 (Bayesian Networks)

数学之美 系列十九 - 马尔可夫链的扩展 贝叶斯网络 (Bayesian Networks)
1/28/2007 09:53:00 下午

发表者:Google 研究员,吴军

我们在前面的系列中多次提到马尔可夫链 (Markov
Chain),它描述了一种状态序列,其每个状态值取决于前面有限个状态。这种模型,对很多实际问题来讲是一种很粗略的简化。在现实生活中,很多事物相互的关系并不能用一条链来串起来。它们之间的关系可能是交叉的、错综复杂的。比如在下图中可以看到,心血管疾病和它的成因之间的关系是错综复杂的。显然无法用一个链来表示。



我们可以把上述的有向图看成一个网络,它就是贝叶斯网络。其中每个圆圈表示一个状态。状态之间的连线表示它们的因果关系。比如从心血管疾病出发到吸烟的弧线表示心血管疾病可能和吸烟有关。当然,这些关系可以有一个量化的可信度 (belief),用一个概率描述。我们可以通过这样一张网络估计出一个人的心血管疾病的可能性。在网络中每个节点概率的计算,可以用贝叶斯公式来进行,贝叶斯网络因此而得名。由于网络的每个弧有一个可信度,贝叶斯网络也被称作信念网络 (belief networks)。

和马尔可夫链类似,贝叶斯网络中的每个状态值取决于前面有限个状态。不同的是,贝叶斯网络比马尔可夫链灵活,它不受马尔可夫链的链状结构的约束,因此可以更准确地描述事件之间的相关性。可以讲,马尔可夫链是贝叶斯网络的特例,而贝叶斯网络是马尔可夫链的推广。

使用贝叶斯网络必须知道各个状态之间相关的概率。得到这些参数的过程叫做训练。和训练马尔可夫模型一样,训练贝叶斯网络要用一些已知的数据。比如在训练上面的网络,需要知道一些心血管疾病和吸烟、家族病史等有关的情况。相比马尔可夫链,贝叶斯网络的训练比较复杂,从理论上讲,它是一个 NP-complete 问题,也就是说,对于现在的计算机是不可计算的。但是,对于某些应用,这个训练过程可以简化,并在计算上实现。

值得一提的是 IBM Watson 研究所的茨威格博士 (Geoffrey Zweig) 和西雅图华盛顿大学的比尔默 (Jeff Bilmes) 教授完成了一个通用的贝叶斯网络的工具包,提供给对贝叶斯网络有兴趣的研究者。

贝叶斯网络在图像处理、文字处理、支持决策等方面有很多应用。在文字处理方面,语义相近的词之间的关系可以用一个贝叶斯网络来描述。我们利用贝叶斯网络,可以找出近义词和相关的词,在 Google 搜索和 Google 广告中都有直接的应用。
回复

使用道具 举报

发表于 2010-1-20 19:01 | 显示全部楼层

数学之美 系列二十 -自然语言处理的教父 马库斯

数学之美 系列二十 -自然语言处理的教父 马库斯
4/13/2007 07:03:00 下午

发表者:Google 研究员,吴军

我们在前面的系列中介绍和提到了一些年轻有为的科学家,迈克尔·柯林斯,艾里克·布莱尔,大卫·雅让斯基,拉纳帕提等等,他们都出自宾夕法尼亚计算机系米奇·马库斯(Mitch Marcus)名下。就像许多武侠小说中描写的,弟子都成了各派的掌门,师傅一定了不得。的确,马库斯虽然作为第一作者发表的论文并不多,但是从很多角度上讲,他可以说是自然语言处理领域的教父。

马库斯教授长期当任宾夕法尼亚大学计算机系主任,直到他在几年前从 AT&T 找到皮耶尔替代他为止。作为一个管理者,马库斯显示出在自然处理和计算机科学方面的卓识的远见。在指导博士生时,马库斯发现语料库在自然语言处理中的重要性。马库斯呕心沥血,花了十几年工夫建立了一系列标准的语料库,提供给全世界的学者使用。这套被称为 LDC 的语料库,是当今全世界自然语言处理的所有学者都使用的工具。我们在以前的系列中讲到,当今的自然语言处理几乎都是使用给予统计的方法。要做统计,就需要大量有代表性的数据。利用这些数据开发一个自然语言处理系统的过程,可以统称为训练。比如,我们要训练一个汉语分词系统,我们需要一些已经分好词的中文句子。当然这些句子需要有代表性。如果想知道一个分词系统的准确性,我们也需要一些人工分好词的句子进行测试。这些人工处理好的文字数据库,成为语料库(corpus)。如果每个研究室都人工建立几个语料库,不仅浪费时间精力,而且发表文章时,数据没有可比性。因此,马库斯想到了建立一系列标准的语料库为全世界的学者用。他利用自己的影响力让美国自然科学基金会和 DARPA 出钱立项,联络的多所大学和研究机构,建立的数百个标准的语料库。其中最著名的是 PennTree
Bank 的语料库。PennTree Bank 覆盖多种语言(包括中文)。每一种语言,它有几十万到几百万字的有代表性的句子,每个句子都有的词性标注,语法分析树等等。LDC 语料库如今已成为全世界自然语言处理科学家共用的数据库。如今,在自然语言处理方面发表论文,几乎都要提供基于 LDC 语料库的测试结果。

马库斯给予他的博士生研究自己感兴趣的课题的自由,这是他之所以桃李满天下的原因。马库斯对几乎所有的自然语言处理领域有独到的见解。和许多教授让博士生去做他拿到基金的项目,马库斯让博士生提出自己有兴趣的课题,或者用他已有的经费支持学生,或者为他们的项目区申请经费。马库斯高屋建瓴,能够很快的判断一个研究方向是否正确,省去了博士生很多 try-and-error 的时间。因此他的学生有些很快地拿到的博士学位。

作为系主任,马库斯在专业设置方面显示出卓识的远见。我有幸和他在同一个校务顾问委员会任职,一起讨论计算机系的研究方向。马库斯在几年前互联网很热门、很多大学开始互联网研究时,看到 bioinformatics (生物信息学)的重要性,在宾夕法利亚大学设置这个专业,并且在其他大学还没有意识到时,开始招聘这方面的教授。马库斯还建议一些相关领域的教授,包括后来的系主任皮耶尔把一部分精力转到生物信息学方面。马库斯同时向他担任顾问的其他一些大学提出同样的建议。等到网络泡沫破裂以后,很多大学的计算机系开始向生物信息学转向,但是发现已经很难找到这些方面好的教授了。我觉得,当今中国的大学,最需要的就是马库斯这样卓有远见的管理者。

过几天我又要和马库斯一起开顾问委员会的会议了,不知道这次他对计算机科学的发展有什么见解。
回复

使用道具 举报

发表于 2010-1-20 19:57 | 显示全部楼层

数学之美系列二十一 - 布隆过滤器(Bloom Filter)

数学之美系列二十一 - 布隆过滤器(Bloom Filter)
7/03/2007 09:35:00 上午

发表者:Google(谷歌)研究员 吴军

在日常生活中,包括在设计计算机软件时,我们经常要判断一个元素是否在一个集合中。比如在字处理软件中,需要检查一个英语单词是否拼写正确(也就是要判断它是否在已知的字典中);在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上;在网络爬虫里,一个网址是否被访问过等等。最直接的方法就是将集合中全部的元素存在计算机中,遇到一个新元素时,将它和集合中的元素直接比较即可。一般来讲,计算机中的集合是用哈希表(hash table)来存储的。它的好处是快速准确,缺点是费存储空间。当集合比较小时,这个问题不显著,但是当集合巨大时,哈希表存储效率低的问题就显现出来了。比如说,一个象 Yahoo,Hotmail 和 Gmai 那样的公众电子邮件(email)提供商,总是需要过滤来自发送垃圾邮件的人(spamer)的垃圾邮件。一个办法就是记录下那些发垃圾邮件的 email 地址。由于那些发送者不停地在注册新的地址,全世界少说也有几十亿个发垃圾邮件的地址,将他们都存起来则需要大量的网络服务器。如果用哈希表,每存储一亿个 email 地址, 就需要 1.6GB 的内存(用哈希表实现的具体办法是将每一个 email 地址对应成一个八字节的信息指纹 googlechinablog.com/2006/08/blog-post.html,然后将这些信息指纹存入哈希表,由于哈希表的存储效率一般只有 50%,因此一个 email 地址需要占用十六个字节。一亿个地址大约要 1.6GB, 即十六亿字节的内存)。因此存贮几十亿个邮件地址可能需要上百 GB 的内存。除非是超级计算机,一般服务器是无法存储的。

今天,我们介绍一种称作布隆过滤器的数学工具,它只需要哈希表 1/8 到 1/4 的大小就能解决同样的问题。

布隆过滤器是由巴顿.布隆于一九七零年提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。我们通过上面的例子来说明起工作原理。

假定我们存储一亿个电子邮件地址,我们先建立一个十六亿二进制(比特),即两亿字节的向量,然后将这十六亿个二进制全部设置为零。对于每一个电子邮件地址 X,我们用八个不同的随机数产生器(F1,F2, ...,F8) 产生八个信息指纹(f1, f2, ..., f8)。再用一个随机数产生器 G 把这八个信息指纹映射到 1 到十六亿中的八个自然数 g1, g2, ...,g8。现在我们把这八个位置的二进制全部设置为一。当我们对这一亿个 email 地址都进行这样的处理后。一个针对这些 email 地址的布隆过滤器就建成了。(见下图)



现在,让我们看看如何用布隆过滤器来检测一个可疑的电子邮件地址 Y 是否在黑名单中。我们用相同的八个随机数产生器(F1, F2, ..., F8)对这个地址产生八个信息指纹 s1,s2,...,s8,然后将这八个指纹对应到布隆过滤器的八个二进制位,分别是 t1,t2,...,t8。如果 Y 在黑名单中,显然,t1,t2,..,t8 对应的八个二进制一定是一。这样在遇到任何在黑名单中的电子邮件地址,我们都能准确地发现。

布隆过滤器决不会漏掉任何一个在黑名单中的可疑地址。但是,它有一条不足之处。也就是它有极小的可能将一个不在黑名单中的电子邮件地址判定为在黑名单中,因为有可能某个好的邮件地址正巧对应个八个都被设置成一的二进制位。好在这种可能性很小。我们把它称为误识概率。在上面的例子中,误识概率在万分之一以下。

布隆过滤器的好处在于快速,省空间。但是有一定的误识别率。常见的补救办法是在建立一个小的白名单,存储那些可能别误判的邮件地址。


数学之美系列二十二 由电视剧《暗算》所想到的 — 谈谈密码学的数学原理

2007年9月13日 下午 09:00:00


发表者:Google(谷歌)研究员 吴军

前一阵子看了电视剧《暗算》,蛮喜欢它的构思和里面的表演。其中有一个故事提到了密码学,故事本身不错,但是有点故弄玄虚。不过有一点是对的,就是当今的密码学是以数学为基础的。(没有看过暗算的读者可以看一下介绍,http://ent.sina.com.cn/v/2005-10-17/ba866985.shtml
因为我们后面要多次提到这部电视剧。)

密码学的历史大致可以推早到两千年前,相传名将凯撒为了防止敌方截获情报,用密码传送情报。凯撒的做法很简单,就是对二十几个罗马字母建立一张对应表,比如说
   

这样,如果不知道密码本,即使截获一段信息也看不懂,比如收到一个的消息是 EBKTBP,那么在敌人看来是毫无意义的字,通过密码本解破出来就是 CAESAR 一词,即凯撒的名字。这种编码方法史称凯撒大帝。当然,学过信息论的人都知道,只要多截获一些情报,统计一下字母的频率,就可以解破出这种密码。柯蓝道尔在他的“福尔摩斯探案集”中“跳舞的小人”的故事里已经介绍了这种小技巧。在很长时间里,人们试图找到一些好的编码方法使得解密者无法从密码中统计出明码的统计信息,但是,基本上靠经验。有经验的编码者会把常用的词对应成多个密码, 使得破译者很难统计出任何规律。比如,如果将汉语中的“是”一词对应于唯一一个编码 0543,那么破译者就会发现 0543 出现的特别多。但如果将它对应成十个密码 0543,3737,2947 等等,每次随机的挑一个使用,每个密码出现的次数就不会太多,而且破译者也无从知道这些密码其实对应一个字。这里面虽然包含着朴素的概率论的原理,但是并不科学化。另外,好的密码必须做到不能根据已知的明文和密文的对应推断出新的密文的内容。历史上有很多在这方面设计得不周到的密码的例子。在第二次世界大战中,日本军方的密码设计就很成问题。美军破获了日本很多密码。在中途岛海战前,美军截获的日军密电经常出现 AF 这样一个地名,应该是太平洋的某个岛屿,但是美军无从知道是哪个。于是,美军就逐个发表自己控制的每个岛屿上的假新闻。当美军发出“中途岛供水系统坏了”这条假新闻后,从截获的日军情报中又看到 AF 供水出来问题的电文,美军就断定中途岛就是 AF。事实证明判断正确,美军在那里成功地伏击了日本主力舰队。

事实上,在第二次世界大战中,很多顶尖的科学家包括提出信息论的香农都在为美军情报部门工作,而信息论实际上就是情报学的直接产物。香农提出信息论后,为密码学的发展带来了新气象。根据信息论,密码的最高境界是使得敌人在截获密码后,对我方的所知没有任何增加,用信息论的专业术语讲,就是信息量没有增加。一般来讲,当密码之间分布均匀并且统计独立时,提供的信息最少。均匀分布使得敌人无从统计,而统计独立能保证敌人即使看到一段密码和明码后,不能破译另一段密码。这也是《暗算》里传统的破译员老陈破译的一份密报后,但无法推广的原因,而数学家黄依依预见到了这个结果,因为她知道敌人新的密码系统编出的密文是统计独立的。有了信息论后,密码的设计就有了理论基础,现在通用的公开密钥的方法,包括《暗算》里的“光复一号”密码,就是基于这个理论。

公开密钥的原理其实很简单,我们以给上面的单词 Caesar 加解密来说明它的原理。我们先把它变成一组数,比如它的 Ascii 代码 X=099097101115097114(每三位代表一个字母)做明码。现在我们来设计一个密码系统,对这个明码加密。

1,找两个很大的素数(质数)P 和 Q,越大越好,比如 100 位长的, 然后计算它们的乘积 N=P×Q,M=(P-1)×(Q-1)。

2,找一个和 M 互素的整数 E,也就是说 M 和 E 除了 1 以外没有公约数。

3,找一个整数 D,使得 E×D 除以 M 余 1,即 E×D mod M = 1。

现在,世界上先进的、最常用的密码系统就设计好了,其中 E 是公钥谁都可以用来加密,D 是私钥用于解密,一定要自己保存好。乘积 N 是公开的,即使敌人知道了也没关系。

现在,我们用下面的公式对 X 加密,得到密码 Y。
   

好了,现在没有密钥 D,神仙也无法从 Y 中恢复 X。如果知道 D,根据费尔马小定理,则只要按下面的公式就可以轻而易举地从 Y 中得到 X。
   

这个过程大致可以概况如下:
   

公开密钥的好处有:

1.简单。

2.可靠。公开密钥方法保证产生的密文是统计独立而分布均匀的。也就是说,不论给出多少份明文和对应的密文,也无法根据已知的明文和密文的对应来破译下一份密文。更重要的是 N,E 可以公开给任何人加密用,但是只有掌握密钥 D 的人才可以解密, 即使加密者自己也是无法解密的。这样,即使加密者被抓住叛变了,整套密码系统仍然是安全的。(而凯撒大帝的加密方法有一个知道密码本的人泄密,整个密码系统就公开了。)

3.灵活,可以产生很多的公开密钥E和私钥D的组合给不同的加密者。

最后让我们看看破解这种密码的难度。首先,要声明,世界上没有永远破不了的密码,关键是它能有多长时间的有效期。要破公开密钥的加密方式,至今的研究结果表明最好的办法还是对大字 N 进行因数分解,即通过 N 反过来找到 P 和 Q,这样密码就被破了。而找 P 和 Q 目前只有用计算机把所有的数字试一遍这种笨办法。这实际上是在拼计算机的速度,这也就是为什么 P 和 Q 都需要非常大。一种加密方法只有保证 50 年计算机破不了也就可以满意了。前几年破解的 RSA-158 密码是这样因数分解的

395058745832651445264197678006144819960207764603049364541393760515793556265294
50683609727842468219535093544305870490251995655335710209799226484977949442955603
= 3388495837466721394368393204672181522815830368604993048084925840555281177 ×11658823406671259903148376558383270818131012258146392600439520994131344334162924536139

现在,让我们回到《暗算》中,黄依依第一次找的结果经过一系列计算发现无法归零,也就是说除不尽,我猜她可能试图将一个大数 N 做分解,没成功。第二次计算的结果是归零了,说明她找到的 N=P×Q 的分解方法。当然,这件事能不能用算盘完成,我就不知道了,但我觉得比较夸张。另外我对该电视剧还有一个搞不懂的问题就是里面提到的“光复一号”密码的误差问题。一个密码是不能有误差的,否则就是有的密钥也无法解码了。我想可能是指在构造密码时,P 和 Q 之一没找对,其中一个(甚至两个都)不小心找成了合数,这时密码的保密性就差了很多。如果谁知道电视剧里面讲的“误差”是指什么请告诉我。另外,电视剧里提到冯∙诺依曼,说他是现代密码学的祖宗,我想是弄错了,应该是香农。冯∙诺依曼的贡献在发明计算机和提出博弈论(game theory)。

不管怎么样,我们今天用的所谓最可靠的加密方法的数学原理其实就这么简单,一点也不神秘,无非是找几个大素数做一些乘除和乘方运算就可以了。
回复

使用道具 举报

发表于 2010-1-20 20:00 | 显示全部楼层

数学之美系列 二十三 输入一个汉字需要敲多少个键 — 谈谈香农第一定律

数学之美系列 二十三 输入一个汉字需要敲多少个键 — 谈谈香农第一定律
12/03/2007 10:05:00 上午

发表者:Google(谷歌)研究员 吴军

今天各种汉字输入法已经很成熟了,随便挑出一种主要的输入法比十几年前最好的输入法都要快、要准。现在抛开具体的输入法,从理论上分析一下,输入汉字到底能有多快。

我们假定常用的汉字在二级国标里面,一共有 6700 个作用的汉字。如果不考虑汉字频率的分布,用键盘上的 26 个字母对汉字编码,两个字母的组合只能对 676 个汉字编码,对 6700 个汉字编码需要用三个字母的组合,即编码长度为三。当然,聪明的读者马上发现了我们可以对常见的字用较短的编码对不常见的字用较长的编码,这样平均起来每个汉字的编码长度可以缩短。我们假定每一个汉字的频率是
p1, p2, p3, ..., p6700
它们编码的长度是
L1, L2, L3, ..., L6700
那么,平均编码长度是
p1×L1 + p2×L2 + ... + p6700×L6700

香农第一定理指出:这个编码的长度的最小值是汉字的信息熵,也就是说任何输入方面不可能突破信息熵给定的极限。当然,香农第一定理是针对所有编码的,不但是汉字输入编码的。这里需要指出的是,如果我们将输入法的字库从二级国标扩展到更大的字库 GBK,由于后面不常见的字频率较短,平均编码长度比针对国标的大不了多少。让我们回忆一下汉字的信息熵(见 http://www.googlechinablog.com/2006/04/4.html),
H = -p1 * log p1 - ... - p6700 log p6700。
我们如果对每一个字进行统计,而且不考虑上下文相关性,大致可以估算出它的值在十比特以内,当然这取决于用什么语料库来做估计。如果我们假定输入法只能用 26 个字母输入,那么每个字母可以代表 log26=
4.7 比特的信息,也就是说,输入一个汉字平均需要敲 10/4.7= 2.1 次键。

聪明的读者也许一经发现,如果我们把汉字组成词,再以词为单位统计信息熵,那么,每个汉字的平均信息熵将会减少。这样,平均输入一个字可以少敲零点几次键盘。不考虑词的上下文相关性,以词为单位统计,汉字的信息熵大约是8比特作用,也就是说,以词为单位输入一个汉字平均只需要敲 8/4.7=1.7 次键。这就是现在所有输入法都是基于词输入的内在原因。当然,如果我们再考虑上下文的相关性,对汉语建立一个基于词的统计语言模型(见http://www.googlechinablog.com/2006/04/blog-post.html),我们可以将每个汉字的信息熵降到 6 比特作用,这时,输入一个汉字只要敲 6/4.7=1.3 次键。如果一种输入方法能做到这一点,那么汉字的输入已经比英文快的多了。

但是,事实上没有一种输入方法接近这个效率。这里面主要有两个原因。首先,要接近信息论给的这个极限,就要对汉字的词组根据其词频进行特殊编码。事实上像王码这类的输入方法就是这么做到,只不过它们第一没有对词组统一编码,第二没有有效的语言模型。这种编码方法理论上讲有效,实际上不实用。原因有两个,第一,很难学;第二,从认知科学的角度上讲,人一心无二用,人们在没有稿子边想边写的情况下不太可能在回忆每个词复杂的编码的同时又不中断思维。我们过去在研究语言识别时做过很多用户测试,发现使用各种复杂编码输入法的人在脱稿打字时的速度只有他在看稿打字时的一半到四分之一。因此,虽然每个字平均敲键次数少,但是打键盘的速度也慢了很多,总的并不快。这也就是为什么基于拼音的简单输入法占统治地位的原因。事实上,汉语全拼的平均长度为 2.98,只要基于拼音的输入法能利用上下文彻底解决一音多字的问题,平均每个汉字输入的敲键次数应该在三次左右,每分钟输入 100 个字完全有可能达到。

另外一个不容易达到信息论极限的输入速度的原因在于,这个理论值是根据一个很多的语言模型计算出来的。在产品中,我们不可能占有用户太多的内存空间,因此各种输入方法提供给用户的是一个压缩的很厉害的语音模型,而有的输入方法为了减小内存占用,根本没有语言模型。拼音输入法的好坏关键在准确而有效的语言模型。

另一方面,由于现有输入方法离信息论给的极限还有很大的差距,汉语输入方法可提升的空间很大,会有越来越好用的输入方法不断涌现。当然,输入速度只是输入法的一项而不是唯一的衡量标准。我们也会努力把谷歌的输入法做的越来越好。大家不妨先试试现在的版本,http://tools.google.com/pinyin/,半年后再看看我们有没有提高。
回复

使用道具 举报

 楼主| 发表于 2010-1-21 09:30 | 显示全部楼层
Google (谷歌)中国的博客网志,走近我们的产品、技术和文化

数学之美系列 二十四 从全球导航到输入法——谈谈动态规划
2008年10月14日 下午 08:34:00

发表者:Google(谷歌)研究员 吴军

今年九月二十三日,Google、T-Mobile 和 HTC 宣布了第一款基于开源操作系统 Android 的 3G 手机,其中一个重要的功能是利用全球卫星定位系统实现全球导航。这个功能在其它手机中早已使用,并且早在五六年前就已经有实现这一功能的车载设备出售。其中的关键技术只有两个:第一是利用卫星定位;第二根据用户输入的起终点,在地图上规划最短路线或者最快路线。后者的关键算法是计算机科学图论中的动态规划(Dynamic Programming)的算法。
   
1.jpg

在图论(请见拙著《图论和网络爬虫》)中,一个抽象的图包括一些节点和连接他们的弧。比如说中国公路网就是一个很好的“图”的例子:每个城市一是个节点,每一条公路是一个弧。图的弧可以有权重,权重对应于地图上的距离或者是行车时间、过路费金额等等。图论中很常见的一个问题是要找一个图中给定两个点之间的最短路径(shortest path)。比如,我们想找到从北京到广州的最短行车路线或者最快行车路线。当然,最直接的笨办法是把所有可能的路线看一遍,然后找到最优的。这种办法只有在节点数是个位数的图中还行得通,当图的节点数(城市数目)有几十个的时候,计算的复杂度就已经让人甚至计算机难以接受了,因为所有可能路径的个数随着节点数的增长而成呈指数增长(或者说几何级数),也就是说每增加一个城市,复杂度要大一倍。显然我们的导航系统中不会用这种笨办法。

所有的导航系统采用的都是动态规划的办法(Dynamic Programming),这里面的规划(programming)一词在数学上的含义是“优化”的意思,不是计算机里面编程的意思。它的原理其实很简单。以上面的问题为例,当我们要找从北京到广州的最短路线时,我们先不妨倒过来想这个问题:假如我们找到了所要的最短路线(称为路线一),如果它经过郑州,那么从北京到郑州的这条子路线(比如是北京-> 保定->石家庄->郑州,称为子路线一),必然也是所有从北京到郑州的路线中最短的。否则的话,我们可以假定还存在从北京到郑州更短的路线(比如北京->济南->徐州->郑州,称为子路线二),那么只要用这第二条子路线代替第一条,我们就可以找到一条从北京到广州的全程更短的路线(称为路线二),这就和我们讲的路线一是北京到广州最短的路线相矛盾。其矛盾的根源在于,我们假设的子路线二或者不存在,或者比子路线一还来得长。

在实际实现算法时,我们又正过来解决这个问题,也就是说,要想找到从北京到广州的最短路线,先要找到从北京到郑州的最短路线。当然,聪明的读者可能已经发现其中的一个“漏洞”,就是我们在还没有找到全程最短路线前,不能肯定它一定经过郑州。不过没有关系,只要我们在图上横切一刀,这一刀要保证将任何从北京到广州的路一截二,如下图。
   
2.jpg

那么从广州到北京的最短路径必须经过这一条线上的某个城市(图中蓝色的菱形)。我们可以先找到从北京出发到这条线上所有城市的最短路径,最后得到的全程最短路线一定包括这些局部最短路线中的一条,这样,我们就可以将一个“寻找全程最短路线”的问题,分解成一个个小的寻找局部最短路线的问题。只要我们将这条横切线从北京向广州推移,直到广州为止,我们的全程最短路线就找到了。这便是动态规划的原理。采用动态规划可以大大降低最短路径的计算复杂度。在我们上面的例子中,每加入一条横截线,线上平均有十个城市,从广州到北京最多经过十五个城市,那么采用动态规划的计算量是 10×10×15,而采用穷举路径的笨办法是 10 的 15 次方,前后差了万亿倍。

那么动态规划和我们的拼音输入法又有什么关系呢?其实我们可以将汉语输入看成一个通信问题,而输入法则是一个将拼音串到汉字串的转换器。每一个拼音可以对应多个汉字,一个拼音串就可以对应图论中的一张图,如下:
   
3.jpg

其中,Y1,Y2,Y3,……,YN 是使用者输入的拼音串,W11,W12,W13 是第一个音 Y1 的候选汉字,W21,W22,W23,W24 是对应于 Y2 的候选汉字,以此类推。从第一个字到最后一个字可以组成很多很多句子,我们的拼音输入法就是要根据上下文找到一个最优的句子。如果我们再将上下文的相关性量化,作为从前一个汉字到后一个汉字的距离,那么,寻找给定拼音条件下最合理句子的问题就变成了一个典型的“最短路径”问题,我们的算法就是动态规划。

上面这两个例子导航系统和拼音输入法看似没什么关系,但是其背后的数学模型却是完全一样的。数学的妙处在于它的每一个工具都具有相当的普遍性,在不同的应用中都可以发挥很大的作用。

我们在下一个系列将详细介绍专门针对拼音输入法的“维特比算法”。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册创意安天

本版积分规则

Archiver|手机版|小黑屋|创意安天 ( 京ICP备09068574,ICP证100468号。 )

GMT+8, 2024-11-18 09:36

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表