
Practical Applications of Bloom filters to the NIST RDS and hard drive triage.

Paul Farrell
Naval Postgraduate School

Monterey, CA

Simson L. Garfinkel
Naval Postgraduate School

Monterey, CA

Douglas White
NIST

Gaithersburg, MD

Abstract

Much effort has been expended in recent years to cre-
ate large sets of hash codes from known files. Distribut-
ing these sets has become more difficult as these sets grow
larger. Meanwhile the value of these sets for eliminating
the need to analyze “known goods” has decreased as hard
drives have dramatically increased in storage capacity.

This paper evaluates the use of Bloom filters (BFs) to dis-
tribute the National Software Reference Library’s (NSRL)
Reference Data Set (RDS) version 2.19, with 13 million
SHA-1 hashes. We present an open source reference BF
implementation and validate it against a large collection of
disk images. We discuss the tuning of the filters, discuss how
they can be used to enable new forensic functionality, and
present a novel attack against bloom filters.

1. Introduction
Previous work has identified Bloom filters as attractive

tools for representing sets of hash values with minimal er-
ror rates[17]. The National Institute of Standards and Tech-
nology (NIST) distributes a sample Bloom filter implemen-
tation in perl and two BFs containing a small subset of the
NIST RDS 2.13[20]. Nevertheless, to date there has been
no published research on large-scale BF implementations
optimized for speed; on-disk representations for BFs have
not been standardized; and BFs have not been publicly in-
corporated into open source forensic tools.

Meanwhile the NSRL’s RDS [19] continues to grow,
with the July 2008 RDS 2.21 release mapping 47,553,722
known files to 14,563,184 unique hashes. NIST has
also announced its intentions to distribute dramatically ex-
panded hash sets “of each 512-byte block of every file we
process”[20].

While storing these 14 million SHA1 hashes requires
291 megabytes—a small amount of storage in today’s
world—the ancillary material that accompanies these hash
codes expands the size of the RDS to almost 6GB, mak-
ing the files somewhat difficult to distribute and work with.
The time to search this database is also increasing, since
most tools use either a binary search or some kind of index

tree, producing access speeds that scale with the log of the
dataset size. In our testing with very capable reference hard-
ware, we could only perform between 17 thousand and 85
thousand RDS hash lookups per second using SleuthKit’s
hfind command1, and only 4 thousand lookups per second
when the hashes were stored in a MySQL InnoDB database.

Bloom filters are an attractive way for handling very
large hash sets. In this paper we present a new BF imple-
mentation that can perform between 98 thousand and 2.2
million lookups per second on that same hardware.2

The RDS includes a significant amount of metadata for
each file, including the file’s name, size, the software pack-
age and operating systems for which it was distributed, and
the publisher. This information is not used by SleuthKit’s
hfind command, Guidance Software’s EnCase[11], or
other tools we have evaluated. This metadata is largely un-
exploited which, when accessed efficiently, can assist in the
rapid analysis and triage of newly acquired hard drives.
1.1. This paper’s contribution

This paper applies and extends previous work on BFs to
the National Software Reference Library’s (NSRL) Refer-
ence Data Set (RDS), specifically:
• We present nsrl bloom, a new, efficient, highly config-

urable, open source Bloom filter implementation in C.
• We modified fiwalk, an automated forensics tool

based on SleuthKit, to use on our BF implementation
to automatically exclude “known goods.”

• We evaluate the performance of BFs created with dif-
ferent parameters and compare actual results with the
NSRL RDS to the results predicted by theory.

• We evaluate performance of BFs compared to lookups
in sorted flat-files (what SleuthKit uses) and lookups
of hashes stored in a large MySQL database.

1The range results from the fact that hfind’s binary search algorithm
terminates early when it finds a hash that is in the database. As a result,
looking up a hash that is in the data set is roughly 5 times faster than
looking up a hash that is not. Surprisingly, MySQL exhibits similar per-
formance for both kinds of hashes.

2Once again, the range is the result of the difference in time between
looking up a hash that is not in the database and one that is. Unlike binary
searches on sorted data, BFs terminate faster when searching for data that
is not present.



• We evaluate the coverage of RDS over fresh installs of
Windows 2000, XP and Vista.

• We present a novel attack against the use of BFs to
eliminating “known goods.”

• We evaluate the use of BFs for cross-drive analysis and
the distribution of extracted features.

1.2. Related Work
Bloom introduced “hash coding with allowable errors”

in 1970[2]. Dillinger and Manolios showed how BFs could
be produced that are fast, accurate, memory-efficient, scal-
able and flexible[8]. Fan et al. introduced Counting Bloom
Filters, in which small integers are stored in the vector in-
stead of individual bits[9]. Bloomier Filters[5] use layered
BFs for mapping entries to one of multiple sets. Broder
presents equations for computing the optimal number of
hashing functions to provide the minimal false positive
rate[3]. Manolios provides a simple online calculator for
computing these values[14].

BFs have since been applied to various forensic
applications[3]. Roussev et al. proposed using BFs for stor-
ing file hashes[17]. The researchers also stated object ver-
sioning could be detected by piecewise hashing file parts,
noting “it is possible to use filters with relatively high false
positive rates (> 15%) and low number of bits per element
(3-5) and still identify object versioning.” Unfortunately
the source code for their program, md5bloom, was never
released. In 2007, Roussev et al. expanded this research
with Multi-Resolution Similarity Hashing to detect files that
were similar but different[18].

White created a sample BF implementation in Perl and
distributed it from the NIST website[19]. This code was
flawed, in that each bit of the MD5 or SHA1 code was used
multiple times to compute multiple Bloom hash functions.
Furthermore, because it was written in perl, excessive mem-
ory consumption prevented this program from being able to
digest the entire RDS.
1.3. Outline of paper

Section 2 discusses BFs and our BF implementation.
Section 3 discusses our experience at applying our imple-
mentation to the NSRL RDS. Section 5 discusses the impli-
cations of this work to mainstream forensics research and
practice. Section 6 concludes.
2. High-performance BFs
2.1. Introduction to Bloom filters

Fundamentally the Bloom filter is a data structure that al-
lows multiple values V0 . . . Vn to be stored in a single finite
bit vector F . As such, BFs support two primitive opera-
tions: storing a new value V into a filter F , and querying as
to whether or not a value V ′ is present in F .

BFs work by computing a hash of V and scaling this
hash to an ordinal between 0 and m, producing a bit i. This
bit is then set in the bit vector F which is also of size m. To
query the filter to see if V ′ is present, the value V ′ is hashed

and scaled to produce bit i′. If bit i′ in the filter is not set,
then value V ′ could not have been stored in the filter.

If bit i′ is set, the bit may be set because V ′ was previ-
ously stored in the filter. Alternatively, another value V ′′

may have been stored that has a scaled hash i′′ that is equal
to i′. The values V ′ and V ′′ are aliases: users of the filter
cannot determine which of these two values was previously
stored. Because of this property, BFs are said to offer prob-
abilistic data retrieval: if a BF says that a value was not
stored in the filter, then it was definitely not stored. But if
the BF says that a value was stored, the value might have
been stored; alternatively, an alias may have been stored.
As more information is stored in a BF, the probability of
aliases and false positives increase.

In practice, multiple hash functions f1 . . . fk are used to
store a single value V into filter F . This constellation of bits
is referred to as an element. Storing data thus requires set-
ting k different bits (i1 . . . ik) in filter vector F while query-
ing requires checking to see if those bits are set.

BFs can thus described by four parameters:
m: the number of bits in the filter. (In this paper we

additionally use M to denote log2(m).)
k: the number of hash functions applied to produce

each element
b: the number of bits set per element in the filter
f : the hash function

Once data is stored in the filter, additional parameters
can be used to describe the filter’s state:

n the number of elements stored in the filter
p the probability that a value V , reported to be in the

filter, was actually stored in the filter.
As discussed elsewhere[16, 15, 17], the probability that

a bit in a filter will not be set is:

P0 = (1− 1/m)kn (1)

This can be approximated as:

P0 = e−kn/m (2)

The theoretical false positive rate is approximated as:

Pfp = (1− e−kn/m)k (3)

2.2. Performance Characteristics
Bloom filters are similar to hash tables (HTs), in that a

large number of sparse values can be stored compactly in
a single data structure. Once stored, the structure allows a
values’ presence or absence to be queried in constant time
irrespective of the amount of data that has been stored. BFs
have an advantage over HTs in that data can be stored in
significantly less space; they have the disadvantage that the
retrieval is probabilistic—a given BF might say that the data
is present, when in fact it is not.

2



Another commonality between BFs and HTs is that nei-
ther enjoys locality of reference[7] because data is hashed
throughout the structure. Because of real performance char-
acteristics of memory caches and memory hierarchies, con-
siderable performance advantages can be achieved on mod-
ern computers by minimizing the memory footprint of a
data structure. This is especially true for structures like BFs
and HTs that do not access memory in any predictable or-
der: there is no way to achieve locality of reference other
than shrinking the data structure to fit within a cache.

Consider a modern Macintosh iMac desktop based on
an Intel Core 2 Duo microprocessor. This processor runs
with an internal clock speed of 2.4Ghz. But because there
is no locality of reference, the speed of accessing each BF
bit will be roughly equal to the speed of the memory sys-
tem in which that element is stored (Table 1), ignoring the
overhead associated with the BFs hashing and bookkeep-
ing. A 16K BF that fits entirely into the computer’s 32K L1
data cache can be accessed at the rate of roughly 40 million
20-function queries per second (the remainder of the cache
is required for the state associated with the aforementioned
hashing and bookkeeping). On the other hand, a filter that
is 500MB in size and fits entirely in main memory can only
support 710,000 hash lookups per second, because the com-
puter’s high-performance memory subsystem nevertheless
requires 70 nanoseconds to fetch each hashed bit.

Most memory systems are pipelined, allowing multiple
reads to be outstanding at any given time. Furthermore, the
Core 2 Duo can execute 4 instructions per cycle. This capa-
bility will be used to perform bookkeeping activities such as
incrementing loop counters and shifting bits; eventually the
thread will stall until the requested bit is fetched from the
memory subsystem in which it resides. If we can reduce the
delay in fetching the data from memory and the number of
times we must fetch per lookup, we can significantly speed
the hash lookup process. By varying the size and number
of hash functions for a BF, we can optimize our data set
representation for performance.
2.3. nsrl bloom

White’s original code[19] had a flaw that caused each
bits of the MD5 or SHA1 hash in multiple Bloom hash func-
tions. As a result, the bits were correlated and BFs created
with the perl code showed a factor of 10 more false pos-
itives than predicted by theory. For BF’s to be effective,
the hashing functions must be truly random and indepen-
dent. To avoid this correlation, our implementation simply
divides the hash into pieces based on the size of the BF: a
Bloom filter with k = 4 and M = 28 uses the first 28 bits
of the SHA1 for the Bloom hash function f1, the second
28 bits for f2, and so on. Because these hash functions are
strong, bits are not correlated with one another. But as a re-
sult, k ×M must be less than 128 a Bloom filter built from
MD5 hashes and 160 for SHA1 hashes.

Starting with this code base, we implemented a fast and
configurable BF implementation in C with both C and C++
bindings. Filter vectors are stored in binary files, with the
first 4096-bytes of each file containing the filter’s parame-
ters and a comment. The implementation has a simple but
usable API consisting of six C functions:
• next_bloom_create() — Creates a Bloom filter

with a specified hash size, M , k and an optional com-
ment. The Bloom filter can reside in memory or be
backed to a file.

• nsrl_bloom_open() — Opens a previously cre-
ated Bloom filter, reading the parameters from the file.

• nsrl_bloom_add() — Adds a hash value to the
Bloom filter.

• nsrl_bloom_query()— Queries the Bloom filter
for the membership of the hash.

• nsrl_bloom_set_encryption_passphrase
— Adds string as a cryptographic passphrase for the
Bloom filter. (The hash of the string is calculated;
this is used as a key of a HMAC for future adds and
queries.)

• nsrl_bloom_free() — Frees the memory asso-
ciated with the Bloom filter.

Our C implementation uses memmap to map the BF vec-
tor into memory for speedy lookup: in practice, this means
that the computer’s virtual memory subsystem pages the bit
vector into memory as needed and performs no unneeded
copies. If the entire BF is likely to be needed, the filter can
be paged into RAM all at once in order to minimize hard
drive latency due to random seeks.

Besides having a correct hash function, this new imple-
mentation dramatically faster and more memory efficient
than the original perl version, allowing us to test it on the
complete RDS.

There is also a C++ class that allows zero-overhead ac-
cess to the C API.
3. Bloom filters for the RDS

Having completed our BF implementation, we pro-
ceeded to create a number of BFs that contained the SHA1
hashes from the NSRL RDS.
3.1. Building the filters

The RDS is distributed as four ISO images in ISO9660
format. Each image contains several text files. Details of
RDS are available online.[19]

We downloaded the ISO images for RDS 2.19 from the
NIST website, RDS 2.20 being published too late for in-
clusion in this paper. Each ISO consists of several text files
and a ZIP file containing more text files. We processed these
images with two programs: nsrlutil.py, a Python pro-
gram which mounted the disk images as files on a Linux
server, opened the compressed ZIP file, and sent the hashes
to standard output; and bloom, a program which created
a new BF using parameters provided on the command line

3



Time to access # hash lookups
Memory System Size Cycle time Latency 10,000 random bits per second
L1 Data Cache 32K 3 cycles 1.25 ns 12.5 µs 40,000,000
L2 Cache 4MB 14 cycles 5.83 ns 58.3 µs 8,500,000
667 Mhz DDR2 SDRAM 4GB 5-5-5-15 70 ns 700 µs 710,000
Disk 1000GB n/a 8.5 ms 85 s 6

Table 1. Relative speeds to access a bit of a Bloom table or hash table stored in different memory
subsystems on a modern iMac computer (2.4Ghz Intel Core 2 Duo Processor E6600). Memory latency
information from [6, 12]. Disk access times are approximate, based on 8.5ms average seek time. A
“hash lookup” requires accessing 20 random bits.

and then loaded the filter with hash codes read from stan-
dard input. By piping these two programs together we were
able to rapidly create a large number of BF files, each with
a specific set of parameters.
3.2. Accuracy and Validation

Our goal was to create RDS BFs that would be small
enough to distribute on CD if necessary and to fit into
the main memory of older machines or smaller PDA style
devices. We arbitrarily decided to evaluate BF of sizes
32MB, 64MB, 128MB, 256MB and 512MB. Such BFs can
be created with 228 through 232 one-bit elements (M =
28 . . . 32). But how many hash functions should be applied
to each element? That is, what is the optimal value of k,
and is it necessary to choose the optimal value?

Given that we knew the desired sizes of our filters and
RDS 2.19 has 13,147,812 unique hashes, we plugged these
numbers into the optimal filter equations and discovered
that a 512MB filter would require 226 hash functions for
a false positive rate of 6.89× 10−69. Clearly, this false pos-
itive rate is far lower than needed—it is, for example, con-
siderably smaller than the failure rate of the hard drive or
electronic media that would be used to store the filter. Fur-
thermore, there is not sufficient entropy in a 160-bit hash
value to provide data for 226 hash functions, each provid-
ing 32-bits of uncorrelated output.

Limiting ourselves to the real-world requirements of the
RDS requires choosing the correct parameters for k and m
giving the fact that there are only 160 bits of data to di-
vide up for the hash. Of course, the values of k = 1 and
m = 2160 would produce no false positives at all, since each
bit in the BF would correspond to a unique hash value, but
such a BF would be impossibly large. The good news is that
with values of k = 5 and m = 232 we see no false positives
in our sample set; these settings allow the full 160 bits of
the SHA-1 value to be used (5×32 = 160) in the BF calcu-
lation, with a theoretical false positive rate of 6.2× 10−16).
Bloom Filters of this size can be comfortably downloaded,
stored on USB memory sticks, and stored in memory of
32-bit workstations. Although we would see a similar false
positive rate with k = 4 (and have an implementation that

is mildly faster), using k = 5 gives our BFs the ability to
accommodate additional information without a degradation
in accuracy.

To validate our code, we wrote a regression program
which tested each BF with a million hash values that we
knew were in the RDS and a million hash values that we
knew were not in the RDS. In keeping with the theory of
BFs, in no case was a value that was known to be in the
RDS reported to be absent from any of our filters. But also
in keeping with theory, we did observe occasional false pos-
itives for lower values of k and m (Table 2) than those we
recommend.
3.3. Performance

In this section we compare the performance of looking
up hash values in a BF, in a sorted text file, and in the
MySQL database—two systems that are commonly used by
today’s forensic tools for storing RDS hash codes. We also
explore the impact on BF performance of adjusting the k
and m parameters.
3.3.1 BF vs. hfind and MySQL

With the BF, each lookup for a match takes f operations,
while a lookup for a non-match takes 1 . . . f operations.
Storing that same data sorted in a text file and perform-
ing a binary search consumes roughly log2(n) operations.
MySQL was configured to use InnoDB tables which is de-
signed to deliver high performance transaction processing,
with row level locking and multi-version concurrency con-
trol. Data is stored in B-trees.[13]

Tests were performed on a Red Hat FC6 server with two
quad-core Xeon processors with 2MB L2 caches running at
3.2Ghz and 8GB RAM. code was compiled with gcc 4.1.2
and run on a 2.6.22.9-61 kernel.

RDS is distributed as four ISO images. We combined the
hashes from all of these images into a single file. This RDS
2.19 file was imported into clean BF with m = 232, k =
5; imported to SleuthKit[4] with hfind using the com-
mand hfind -i nsrl-sha1 flatfile.txt; and
imported into a single MySQL database located on the test
machine to reduce network latency overhead affecting test
results.

4



m (BF size, in bits (MB))
222 223 224 225 226 227 228 229 230 231 232

(512KB) (1MB) (2MB) (4MB) (8MB) (16MB) (32MB) (64MB) (128MB) (256MB) (512MB)

k Predicted number of false positives for 1 million random values:
1 956,486 791,401 543,274 324,184 177,920 93,314 47,799 24,192 12,170 6,081 3,045
2 996,217 914,866 626,315 295,146 105,096 31,656 8,707 2,285 585 148 37
3 999,753 973,016 740,548 330,423 87,780 16,510 2,552 355 47 6 1
4 999,986 992,448 836,980 392,271 87,111 11,045 1,002 76 5 0 0
5 999,999 998,027 904,503 467,768 95,013 8,708 484 20 1 0 0
6 1,000,000 999,506 946,760 548,411 109,179 n/a n/a n/a n/a n/a n/a
7 1,000,000 n/a n/a n/a n/a n/a n/a n/a n/a n/a
k Actual rate of false positives for 1 million random values:
1 956,483 791,511 543,165 323,971 178,416 93,558 48,042 24,448 12,373 6,213 3,156
2 996,126 914,938 625,765 295,401 105,465 31,921 8,735 2,282 582 144 48
3 999,758 972,802 740,271 330,808 88,079 16,518 2,556 378 46 3 0
4 999,989 992,175 836,379 392,427 87,606 10,956 1,049 60 4 0 0
5 999,999 997,916 904,260 467,288 95,662 8,755 479 15 0 0 0
6 1,000,000 999,463 946,587 548,083 109,982 n/a n/a n/a n/a n/a n/a
7 1,000,000 n/a n/a n/a n/a n/a n/a n/a n/a n/a

Table 2. Predicted and actual number of false positives for 1 million pseudo-random hashes queried
against a BFs loaded with the 13.1 million hashes of RDS 2.19. Entries with 1,000,000 at the left of
the table indicates that every hash value was a false positive; entries marked with 0 at the right of the
table indicate that there were no false positives. Entries marked n/a cannot be computing because
there are not sufficient number of bits in the 160-bit SHA-1. This analysis indicates that m = 232, k = 5
appears to be the optimal value for a Bloom filter designed to hold SHA-1 values.

We measured the time that it took to perform two sets
of queries against each object. The first set was 1 million
SHA1 hashes taken from RDS 2.19—hashes that were guar-
anteed to be in the data set. Next we measured the time
that it took to perform 1 million pseudo-random queries of
hashes that were known not to be in the data set. From this
number we could determine the number of queries per sec-
ond that each configuration delivered (Figure 1).

As expected the BFs were faster than both the binary
searches through the sorted text file used by SleuthKit and
MySQL’s InnoDB tables. Also as expected, it is dramati-
cally faster to lookup a hash that is not in the BF than one
that is in the BF—this is because our search routine stops
searching the moment it retrieves the first unset bit i′ from
vector F .
3.3.2 Effects of m on speed

In Section 2.2 we asserted that smaller BFs would have
higher performance on modern hardware due to L1 and L2
cache performance. To test this assertion we constructed
multiple filters with k = 5 and m stepping from 28 to 232.
We then inserted 1 million pseudorandom values into the
hash and searched for each of these values.3

3Searching for known values is the slowest operation for our BF imple-
mentation; searching values not to be present with a BF of k = 5 has the
same performance as searching values not to be present in a filter of k = 1
but with the same constant overhead. Since we were interested in measur-

This attempting to measure the impact of the L1 and L2
cache was frustrated because these tests were done on an
Internet-accessible multi-user machine running Linux: a lot
of other processes were competing for the cache. On the
other hand, this configuration is similar to what most prac-
titioners will be using—a complex operating system that is
running multiple tasks at once. Nevertheless, we did ob-
serve a significant decrease in the BF’s lookup performance
as the filter increased in size (Figure 2). The graph also
shows an inflection point as the size of the graph reaches
the size of the benchmark system’s L2 cache, as indicated
by the dashed line.
3.3.3 Effects of k on speed

In Section 3.1 we asserted that BFs with smaller num-
bers of hash functions (i.e. BFs with smaller k) would
have higher performance due to the computational over-
head of each hash function and retrieving the corresponding
bit from memory. To look for this effect, we constructed
multiple filters with m = 220 and k ranging from 1 to 5.
When then followed the same procedure of inserting 1 mil-
lion pseudorandom values and looking up those values. As
expected, performance decreased as k increased. Indeed,
the number of lookups per second is roughly proportional

ing the performance of the BF and not the overhead of our implementation,
we used k = 5.

5



In Set Not in Set10
3

10
4

10
5

10
6

10
7

Q
u
e
ri

e
s 

p
e
r 

se
co

n
d

Query times of hash lookup

Bloom Filters
Text Files
MySQL

Method In Set Not in Set
Bloom Filters 424,808 1,314,060
SleuthKit 16,942 17,595
MySQL InnoDB 4,415 4,369

Figure 1. Queries per second for 160-bit
SHA1 hashes against M = 32, k = 5 Bloom
Filters, SleuthKit’s hfind, and MySQL’s
SELECT statement (with InnoDB tables). “In
Set” refers to hashes that are in RDS 2.19,
while “Not in Set” refers to hash values that
are not in RDS 2.19.

to 1
k (Figure 3).

3.4. Batch forensics with fiwalk

We have incorporated our BF implementation into
fiwalk, an open source batch disk forensic analysis pro-
gram. fiwalk uses Carrier’s SleuthKit to perform a batch
analysis and extraction of allocated and deleted files from
all of the partitions resident in a disk image that is to be an-
alyzed. fiwalk’s output is a walk file that includes a list of
every file, the file’s metadata, and optionally the file’s MD5
or SHA1 cryptographic hash.

The current version of fiwalk allows files to be spec-
ified by their name or extension. We modified fiwalk to
allow the use of BF for inclusion or exclusion as well. We
further modified fiwalk so that it can generate a BF based
on the files that it finds in a disk image.
3.5. RDS Coverage of Windows

We created VMWare machines Windows 2000 Service
Pack 4, Windows XP Service Pack 2 and Windows Vista
Business. The .vmdk files were converted to raw files
with qemu-img[1] and processed with fiwalk to cre-
ate “walk” files containing all files on the image and the
SHA1 hashes of the files. These walk files were then com-
pared against our baseline RDS v2.19 bloom filter. Next
we patched all of the virtual machines with the latest hot
fixes from Microsoft Update and reprocessed the VMs. The

5 10 15 20 25 30 35
M

0

200

400

600

800

1000

1200

th
o
u
sa

n
d
 l
o
o
ku

p
s 

p
e
r 

se
co

n
d

Lookup speed as a function of M (k=5)

Figure 2. Increasing the size of the Bloom
filter decreases its speed due to caching is-
sues. The dashed line indicates the 2 MB
(8 Mbit) size of the benchmark system’s L2
cache. (Note: these speeds are for success-
ful lookups; the speed of looking up hash val-
ues not in the filter are roughly 12× faster.)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k

100

200

300

400

500

600

700

th
o
u
sa

n
d
 l
o
o
ku

p
s 

p
e
r 

se
co

n
d

Lookup speed as a function of k (M=32)

Figure 3. Increasing the number of bits per
element in the Bloom filter decreases its
speed, since more work needs to be done to
look up each element.

percentage of files in the virtual machines that appeared in
RDS 2.19 are presented in Table 3.

These results yield several interesting data points. First,
even on base operating system installs with hot fixes in-
stalled, only 60–70% of files are covered by the RDS. Why
not more? Some files are unique per system, a result of
hardware signatures, chargeable registration keys, and user-
names. Swap files will invariably differ between machines.
It also shows the amount of updates that Microsoft has is-
sued since the RDS 2.19 was released in December, 2007.

Table 3 shows an analysis of the files that were present

6



PNF files in the WINDOWS/inf directory 707
Windows PC Health Offline Cache files 321
VMWare Tools installation filesa 130
Start Menu links 95
Other Windows System files 77
Miscellaneous system log files 69
Windows wbem autorecover files 53
Other PC Health files 40
Windows System Restore Files 38
Other Documents and Settings files 41
Windows Prefetch files 31
Miscellaneous system text files 15
File system metadata files 8
Other system shortcuts 7

aArtifact of VMWare; not part of the Windows XP base release.

Table 3. Breakdown of the 1635 files in the
Windows XP base installation which were not
present in NSRL RDS.

W
2
K

 S
P
4

W
2
K

 S
P
4
 H

o
tf

ix
e
s

X
P
 S

P
2

X
P
 S

P
2
 H

o
tf

ix
e
s

V
is

ta

V
is

ta
 H

o
tf

ix
e
s0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
t 

C
o
v
e
ra

g
e

RDS 2.19 coverage of various Windows installs

Figure 4. RDS 2.19 coverage of Windows in-
stallations

in our base installation of Microsoft Windows XP but which
were not in the RDS. The majority of them are files result-
ing from the installation of software during installation or
logfiles resulting from actually running the system.

Overall, the number of files not covered by RDS in these
virtual machines is a cause for concern: although many files
are removed for the potential examiner, a significant num-
ber remain. If the primary purpose for RDS is to eliminate
known good files so that they do not need to be examined,
then it is not delivering on this promise.

3.6. Coverage of Real Data
To evaluate the RDS against real-world data, we per-

formed file system walks of 891 hard drives purchased on
the secondary market between 1998 and 2006. Overall, 45
drives had greater than 80% coverage by RDS, 33 which
contained a significant number of files. For the 280 drives
with > 100 files, RDS covered on average 36.64% of files.
For the 186 drives with > 5000 files, RDS coverage aver-
aged 36.62%. Once again, RDS helps reduce what must be
consulted, but not by much.
3.7. Profiling Hard Drives

Although the main use of RDS today is to eliminate
“known goods” from analysis, we believe that the cover-
age of RDS that we have seen limits this use. An alternative
use of this resource is to use the RDS metadata to profile
uses that a hard drive may have had.

We have created an application which attempts to pro-
file a hard drive by looking up each file’s SHA1 in the RDS
database and retrieving a list of all the RDS objects with a
matching hash value, and then retrieving a list of the product
names as identified by NIST. Each hash code may appear
multiple times in the RDS, each appearance corresponding
to a different product. In the cases where only a single prod-
uct name is matched, that product name is added to a list.

Using RDS in this manner allows us to get a rapid han-
dle on the kind of software that is present on the hard drive
even in cases where the programs themselves cannot be re-
covered because of file deletion.
4. Attacks on Bloom Filter Distributions

There is on significant problem with distributing a hash
set as a Bloom Filter: it is dramatically easier for an attacker
to construct a hash collision within the BF than it is to find
a hash collision with a collision-resistant function such as
SHA-1. With collisions easier to find, an attacker could
use this approach as a way of hiding contraband data from
forensic tools that use BFs to eliminate “known goods.”

Assuming that SHA-1 is a strong hash function, the only
way to find a hash collision is by a brute force attack—with
odds of 14 million out of 2160 (assuming 14 million unique
hashes in the RDS). Using a hash collision to hide contra-
band data, then, would require appending a block of data to
the contraband and then making small, incremental changes
to that block of data until the hash collision is found. In
practice, a collision will never be found with a brute force
approach such as this.

However, if those 160 bits are divided into 5 groups of
32 and stored in a BF with m = 232 and k = 5, find-
ing a collision becomes much easier. The 14 million hash
codes represent a maximum of 14 × 5 = 70 million dis-
tinct 32 bit codes, all stored in the same filter. Finding a
false positive for k = 5 requires finding a single hash for
which each of its 5 groups of 32 bits are set in that filter.
The probability for each group of 32 is 70 million : 232 or

7



Figure 5. A test image for creating Bloom fil-
ter false positives.

p = 0.016. Finding all five together is p = (0.016)5, or
roughly 2−30, which makes the difficulty of finding such a
collision roughly equal to the task of cracking a 30-bit en-
cryption key.

We tested this hypothesis by taking a JPEG of a kit-
ten (Figure 5), appending a binary counter, computing the
SHA-1 and checking for a false positive. If no false pos-
itive was found we incremented the counter and repeated.
We found a collision with the M = 32 k = 4 BF
after 110,223,107 iterations by appending the hex bytes
03 df 91 06. Total computation time to find the alias
was roughly 5.5 CPU hours. Details are in Table 4.

The only defense against this attack is to use an en-
crypted bloom filter—for example, by hashing each 160-bit
SHA-1 with a 160-bit random key that is kept secret. Since
the adversary does not know the key, she cannot construct
an alias. Unfortunately, the key must be kept secret, and the
BF cannot be used without it.

In practice, this means that while BFs are a useful tool
for distributing hash sets within an organization, publishing
the BFs in a public forum makes those BFs unsuitable for
use if there is an adversary who might wish to hide data by
creating false positives.

The permutation attack is also a useful defense against
the use of BFs for finding known bads or for performing
cross-drive analysis, but that attack is also useful against
traditional hash analysis as well. That is, making minor
changes to hacker tools or contraband content necessarily
changes the hash value of these files. Therefore, using BFs
for finding known bads does not introduce any more vulner-
abilities than using traditional hash tools, but does make the
searches dramatically faster.

5. Implications
This section explores a variety of forensic applications

that we are developing based on the BF implementation pre-
sented in the previous section.
5.1. Watch Lists

BFs can be used to store hashes of any kind. In partic-
ular, they can store hashes of features[10] extracted from
files or bulk data.

We are developing a bulk extraction application which
extracts features, computes the HMAC using a selectable
secret key, and stores the results in a BF. This program can
be applied to list of email addresses, credit card numbers,
or other kinds of pseudounique information to create watch
list filters. These filters can be taken into the field and used
to triage suspect hard drives while minimizing the risk that
the features in the filter will be compromised.
5.2. Cross-Drive Analysis

Boolean operations can be applied directly to BFs. This
allows BFs to be used for cross drive subsection. The proce-
dure is straightforward. First, a BF containing the hashes of
the extracted features is created for each drive in the corpus.
A threshhold is set for the maximum number of drives for
which a filter will be considered (a threshhold of n

3 where
n is the number of hard drives in the corpus is a good start-
ing point). Next, a threshold vector F̄ of integers is created
where the size of the vector is equal to the number of bits in
the BFs. Each BF is scanned; for every bit i that is encoun-
tered, the corresponding integer in F̄ is incremented. At the
conclusion of the first pass, all integers in F̄ that are larger
than the threshold are zeroed. Those that remain are used
as a filter of relevant pseudounique features. A correlation
vector F̄i,j can now be constructed for each (i, j) pair of
drives by computing F̄ + Fi + Fj .
5.3. Segmenting RDS

File hashes present a useful way of eliminating known
files that are unlikely to be modified from the set of files of
interest to a forensic investigator. However, a set of known
files of interest can provide much more useful information,
though it can be harder to find.

Instead of having a single BF for all of RDS, an alterna-
tive is to divide the data set into smaller sets: one containing
Windows installation files, one containing files from com-
mon desktop application, one for video production applica-
tions, and so on.

Dividing RDS in half and storing each in its own BF
that is half the size significantly decreases the false posi-
tive rate, since there are fewer opportunities for aliasing.
Although the time to search the BFs increases because each
BF must be searched sequentially, the advantage is that the
BFs can be used to characterize the files beyond simply
known/unknown. This is equivialent to using a Bloomier
filter[5].

8



Original SHA1: df7ce34d f723ae1a 675cd06f e202d060 bd82bd9b
SHA1 of modified file: cb6b989b 97ad04fb eaa0ef99 4b8a4059 f2d51dc6
SHA1 of “Index.htm” from “WIN” C076275E 694CC871 C9624246 CB6B989B BFFEA55F
SHA1 of “MEMLABEL.PCT” from “Mac” B961495D 3CDCC1C6 97AD04FB 4CF2CFFE 1BDA3025
SHA1 of “1TXT047.gif” from “WIN2000” EAA0EF99 B62CD185 3A9DD81A 1FF458C3 734767DF
SHA1 of “H8499.GIF” from “Gen” 4B8A4059 19B1E394 85B7B439 E3A0B940 AD65865F

Table 4. Results of a brute force attack against Bloom filter with M=32 and k=4. The first line shows
the SHA1 of the original JPEG (Figure 5); The second line shows the SHA1 of the file modified by
appending the hex bytes 03 DF 91 06. The remaining lines show the SHA1 of the specific files names
and application distributions within RDS 2.19 that contributed to the false-positive, with the specific
aliases boxed.

5.4. Prefiltering with Bloom Filters
An alternative to segmenting the RDS into multiple BFs

is to use the BFs in conjunction with a slower lookup ser-
vice that returns additional information. That is, instead of
viewing the RDS BF as an alternative to storing the RDS
in a MySQL database, the BF can be used as an accelera-
tor for database: hashes that are to be looked up can first
be checked against the BF and, if the hash is in the RDS,
then the MySQL database can be consulted to obtain the
additional metadata.

To this end, our MySQL schema stores significantly
more information for each hash: we store all of the infor-
mation distributed with the RDS, including file name, size,
operating system ID, application ID, language, and RDS re-
lease. This information is stored in structured many-to-one
and many-to-many SQL tables. The information can be ac-
cessed directly using a MySQL connector or through a web-
based XMLRPC server.
6. Conclusions

Validating previous work, we find that BFs are good
tools for performing high-speed matches against hash sets.
However, we learned that BFs are not a good tool for dis-
tributing hash sets of “known goods” if the adversary can be
reasonably expected to get access to the filter or the filter’s
parameters, because it is relatively easy for an adversary to
modify hostile content to create a false positive. The way
to defend against this attack is to create bloom filters in the
field with a randomly chosen cryptographic key.

By testing RDS with a variety of different BF param-
eters, we found that a filter with 232 one-bit elements
(512MB in size) with 5 hash functions produced excellent
performance. We have made our BF implementation freely
available for download; the implementation is Public Do-
main and can be freely used or modified by anyone for any
purpose. Finally, we have shown how BFs can be used to
build secure watch lists and for cross drive analysis.
6.1. Availability

All of the programs discussed in this paper are dis-
tributed in source code form and build with GNU build

tools. We have tested them on MacOS 10.5, Linux, and
FreeBSD. The code may be downloaded from our web
server at http://www.afflib.org/.
6.2. Future Work

We are in the process of evaluating the use of BFs for
hash sets of individual file blocks or disk sectors.

We are modifying our web-based hash lookup service so
that new hashes can be automatically submitted by mem-
bers of the community; we hope to implement a reputation
system and voting algorithm to prevent database poisoning.
We may further modify the system so that users will be able
to download BFs constructed “on the fly” to match specific
SQL queries based on the RDS (e.g., a BF that matches the
files that were part of a specific application program).

We are working on a new release of our BF code that
will be able to directly open BFs that have been compressed
with the ZIP or GZIP algorithms. Given that Java has
memory-mapped files and there are persistent reports that
well-written Java code can out preform the equivalent C,
we are also writing a compatible Java implementation of
our BF code.
6.3. Acknowledgments

The authors wish to express their thanks to Brian Carrier,
Jesse D. Kornblum, Beth Rosenberg and Vassil Roussev, all
of whom have provided useful feedback on this research and
this paper. Thanks also to the anonymous reviewers who
saw and corrected significant errors in a previous version
of this paper and recommended exploring the possibility of
false-positive attacks.

This research was supported in part by the Naval Post-
graduate School’s Research Initiation Program. The views
expressed in this report are those of the author and do not
nnecessarily reflect the official policy or position of the De-
partment of Defense, the National Institute of Standards and
Technology, or the U.S. Government.

References
[1] Fabrice Bellard. Qemu: Open source processor emulator,

2008. http://bellard.org/qemu.

9



[2] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426, 1970.
ISSN 0001-0782.

[3] Andrei Broder and Michael Mitzenmacher. Network appli-
cations of bloom filters: A survey. Internet Mathematics, 1
(4):485–509, May 2004.

[4] Brian Carrier. The Sleuth Kit & Autopsy: Forensics
tools for Linux and other Unixes, 2005. http://www.
sleuthkit.org/.

[5] Bernard Chazelle, Joe Kilian, and Ronitt Rubinfeld. The
blomier filter: an efficient data structure for static sup-
port lookup tables. In Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 30–
39, 2004.

[6] Franck Delattre and Marc Prieur. Intel core 2 duo –
test. July 4 2006. http://www.behardware.com/
articles/623-6/intel-core-2-duo-test.
html.

[7] Peter J. Denning and Stuart C. Schwartz. Properties of the
working-set model. Commun. ACM, 15(3):191–198, 1972.
ISSN 0001-0782.

[8] Peter C. Dillinger and Panagiotis Manolios. Bloom filters in
probabilistic verification. In Formal Methods in Computer-
Aided Design. Springer-Verlag, 2004. http://www.cc.
gatech.edu/fac/Pete.Manolios/research/
bloom-filters-verification.html.

[9] Li Fan, Pei Cao, J. Almeida, and A. Z. Broder. Summary
cache: a scalable wide-area web cache sharing protocol.
IEEE/ACM Transactions on Networking, 8:281–293, June
2000.

[10] Simson Garfinkel. Forensic feature extraction and cross-
drive analysis. In Proceedings of the 6th Annual Digi-
tal Forensic Research Workshop (DFRWS). Lafayette, Indi-
ana, August 2006. http://www.dfrws.org/2006/
proceedings/10-Garfinkel.pdf.

[11] Guidance Software, Inc. EnCase Forensic, 2007.
http://www.guidancesoftware.com/
products/ef_index.asp.

[12] William Henning. Intel core 2 duo e6600 re-
view. Neoseeker, September 19 2006. http:
//www.neoseeker.com/Articles/Hardware/
Reviews/core2duo_e6600/6.html.

[13] Ken Jacobs and Keikki Tuuri. Innodb: Architecture,
features, and latest enhancements. In MySQL Users
Conference 2006, 2006. http://www.innodb.
com/wp/wp-content/uploads/2007/04/
innodb-overview-mysql-uc-2006-pdf.pdf.

[14] Panagiotis Manolios. Bloom filter calculator, 2004.
http://www.cc.gatech.edu/˜manolios/
bloom-filters/calculator.html.

[15] Michael Mitzenmacher. Compressed bloom filters. pages
144–150, 2001.

[16] James K. Mullin. A second look at bloom filters. Commun.
ACM, 26(8):570–571, 1983. ISSN 0001-0782.

[17] Vassil Roussev, Yixin Chen, Timothy Bourg, and Golden
G. Richard III. md5bloom: Forensic filesystem hashing re-
visited. Digital Investigation, 3(Supplement-1):82–90, 2006.

[18] Vassil Roussev, Golden G. Richard III, and Lodovico
Marziale. Multi-resolution similarity hashing. Digital In-
vestigation, 4(Supplement-1):105–113, 2007.

[19] Douglas White. NIST national software reference library
(NSRL), September 2005. http://www.nsrl.nist.
gov/documents/htcia050928.pdf.

[20] Douglas White, August 17 2006. http://www.nsrl.
nist.gov/RDS/rds_2.13/bloom/.

10


