
2019/1/18 Google Online Security Blog: PHA Family Highlights: Zen and its cousins

https://security.googleblog.com/2019/01/pha-family-highlights-zen-and-its.html 1/11

Security Blog

The latest news and insights from Google on security and safety on the Internet

January 11, 2019

Posted by Lukasz Siewierski, Android Security & Privacy Team

Google Play Protect detects Potentially Harmful Applications (PHAs) which Google

Play Protect de�nes as any mobile app that poses a potential security risk to users or

to user data—commonly referred to as "malware." in a variety of ways, such as static

analysis, dynamic analysis, and machine learning. While our systems are great at

automatically detecting and protecting against PHAs, we believe the best security

comes from the combination of automated scanning and skilled human review.

With this blog series we will be sharing our research analysis with the research and

broader security community, starting with the PHA family, Zen. Zen uses root

permissions on a device to automatically enable a service that creates fake Google

accounts. These accounts are created by abusing accessibility services. Zen apps

gain access to root permissions from a rooting trojan in its infection chain. In this

blog post, we do not differentiate between the rooting component and the

component that abuses root: we refer to them interchangeably as Zen. We also

describe apps that we think are coming from the same author or a group of authors.

All of the PHAs that are mentioned in this blog post were detected and removed by

Google Play Protect.

PHA Family Highlights: Zen and its cousins

Background

https://security.googleblog.com/
https://security.googleblog.com/
https://www.android.com/play-protect/
https://source.android.com/security/reports/Google_Android_Security_PHA_classifications.pdf
https://security.googleblog.com/2018/05/keeping-2-billion-android-devices-safe.html
https://security.googleblog.com/2019/01/pha-family-highlights-zen-and-its.html

2019/1/18 Google Online Security Blog: PHA Family Highlights: Zen and its cousins

https://security.googleblog.com/2019/01/pha-family-highlights-zen-and-its.html 2/11

Uncovering PHAs takes a lot of detective work and unraveling the mystery of how

they're possibly connected to other apps takes even more. PHA authors usually try to

hide their tracks, so attribution is di�cult. Sometimes, we can attribute different apps

to the same author based on a small, unique pieces of evidence that suggest

similarity, such as a repetition of an exceptionally rare code snippet, asset, or a

particular string in the debug logs. Every once in a while, authors leave behind a trace

that allows us to attribute not only similar apps, but also multiple different PHA

families to the same group or person.

However, the actual timeline of the creation of different variants is unclear. In April

2013, we saw the �rst sample, which made heavy use of dynamic code loading (i.e.,

fetching executable code from remote sources after the initial app is installed).

Dynamic code loading makes it impossible to state what kind of PHA it was. This

sample displayed ads from various sources. More recent variants blend rooting

capabilities and click fraud. As rooting exploits on Android become less prevalent

and lucrative, PHA authors adapt their abuse or monetization strategy to focus on

tactics like click fraud.

This post doesn't follow the chronological evolution of Zen, but instead covers

relevant samples from least to most complex.

The simplest PHA from the author's portfolio used a specially crafted advertisement

SDK to create a proxy for all ads-related network tra�c. By proxying all requests

through a custom server, the real source of ads is opaque. This example shows one

possible implementation of this technique.

This approach allows the authors to combine ads from third-party advertising

networks with ads they created for their own apps. It may even allow them to sell ad

Apps with a custom-made advertisement SDK

https://2.bp.blogspot.com/-fczkRwSsHug/XDkHHQ0x-bI/AAAAAAAAGy0/3cpKXOZruyk-IdTx1ph27fXAB_uL54yPACLcBGAs/s1600/image7.png

2019/1/18 Google Online Security Blog: PHA Family Highlights: Zen and its cousins

https://security.googleblog.com/2019/01/pha-family-highlights-zen-and-its.html 3/11

space directly to application developers. The advertisement SDK also collects

statistics about clicks and impressions to make it easier to track revenue. Selling the

ad tra�c directly or displaying ads from other sources in a very large volume can

provide direct pro�t to the app author from the advertisers.

We have seen two types of apps that use this custom-made SDK. The �rst are games

of very low quality that mimic the experience of popular mobile games. While the

counterfeit games claim to provide similar functionality to the popular apps, they are

simply used to display ads through a custom advertisement SDK.

The second type of apps reveals an evolution in the author's tactics. Instead of

implementing very basic gameplay, the authors pirated and repackaged the original

game in their app and bundled with it their advertisement SDK. The only noticeable

difference is the game has more ads, including ads on the very �rst screen.

In all cases, the ads are used to convince users to install other apps from different

developer accounts, but written by the same group. Those apps use the same

techniques to monetize their actions.

The authors' tactics evolved from advertisement spam to real PHA (Click Fraud).

Click fraud PHAs simulate user clicks on ads instead of simply displaying ads and

waiting for users to click them. This allows the PHA authors to monetize their apps

more effectively than through regular advertising. This behavior negatively impacts

advertisement networks and their clients because advertising budget is spent

without acquiring real customers, and impacts user experience by consuming their

data plan resources.

The click fraud PHA requests a URL to the advertising network directly instead of

proxying it through an additional SDK. The command & control server (C&C server)

returns the URL to click along with a very long list of additional parameters in JSON

format. After rendering the ad on the screen, the app tries to identify the part of the

advertisement website to click. If that part is found, the app loads Javascript

snippets from the JSON parameters to click a button or other HTML element,

simulating a real user click. Because a user interacting with an ad often leads to a

higher chance of the user purchasing something, ad networks often "pay per click" to

Click fraud apps

2019/1/18 Google Online Security Blog: PHA Family Highlights: Zen and its cousins

https://security.googleblog.com/2019/01/pha-family-highlights-zen-and-its.html 4/11

developers who host their ads. Therefore, by simulating fraudulent clicks, these

developers are making money without requiring a user to click on an advertisement.

This example code shows a JSON reply returned by the C&C server. It has been

shortened for brevity.

Based on this JSON reply, the app looks for an HTML snippet that corresponds to the

active element (show_hide btnnext) and, if found, the Javascript snippet tries to

perform a click() method on it.

The Zen authors have also created a rooting trojan. Using a publicly available rooting

framework, the PHA attempts to root devices and gain persistence on them by

reinstalling itself on the system partition of rooted device. Installing apps on the

system partition makes it harder for the user to remove the app.

This technique only works for unpatched devices running Android 4.3 or lower.

Devices running Android 4.4 and higher are protected by Veri�ed Boot.

Zen's rooting trojan apps target a speci�c device model with a very speci�c system

image. After achieving root access the app tries to replace the framework.jar �le on

the system partition. Replicating framework.jar allows the app to intercept and

modify the behavior of the Android standard API. In particular, these apps try to add

an additional method called statistics() into the Activity class. When inserted, this

method runs every time any Activity object in any Android app is created. This

happens all the time in regular Android apps, as Activity is one of the fundamental

{

 "data": [{

 "id": "107",

 "url": "<ayud_url>",

 "click_type": "2",

 "keywords_js": [{

 "keyword": "<a class=\"show_hide btnnext\"",

 "js": "javascript:window:document.getElementsByClassName(\"show_hide btnnext\

 {

 "keyword": "value=\"Subscribe\" id=\"sub­click\"",

 "js": "javascript:window:document.getElementById(\"sub­click\").click();"

Rooting trojans

https://source.android.com/security/verifiedboot/

2019/1/18 Google Online Security Blog: PHA Family Highlights: Zen and its cousins

https://security.googleblog.com/2019/01/pha-family-highlights-zen-and-its.html 5/11

Android UI elements. The only purpose of this method is to connect to the C&C

server.

After achieving persistence, the trojan downloads additional payloads, including

another trojan called Zen. Zen requires root to work correctly on the Android

operating system.

The Zen trojan uses its root privileges to turn on accessibility service (a service used

to allow Android users with disabilities to use their devices) for itself by writing to a

system-wide setting value enabled_accessibility_services. Zen doesn't even check

for the root privilege: it just assumes it has it. This leads us to believe that Zen is just

part of a larger infection chain. The trojan implements three accessibility services

directed at different Android API levels and uses these accessibility services, chosen

by checking the operating system version, to create new Google accounts. This is

done by opening the Google account creation process and parsing the current view.

The app then clicks the appropriate buttons, scrollbars, and other UI elements to go

through account sign-up without user intervention.

During the account sign-up process, Google may �ag the account creation attempt

as suspicious and prompt the app to solve a CAPTCHA. To get around this, the app

then uses its root privilege to inject code into the Setup Wizard, extract the CAPTCHA

image, and sends it to a remote server to try to solve the CAPTCHA. It is unclear if

the remote server is capable of solving the CAPTCHA image automatically or if this

is done manually by a human in the background. After the server returns the solution,

the app enters it into the appropriate text �eld to complete the CAPTCHA challenge.

The Zen trojan does not implement any kind of obfuscation except for one string that

is encoded using Base64 encoding. It's one of the strings - "How you'll sign in" - that it

looks for during the account creation process. The code snippet below shows part of

the screen parsing process.

if (!title.containsKey("Enter the code")) {

 if (!title.containsKey("Basic information")) {

 if (!title.containsKey(new String(android.util.Base64.decode("SG93IHlvdeKAmWx

 if (!title.containsKey("Create password")) {

 if (!title.containsKey("Add phone number")) {

The Zen trojan

2019/1/18 Google Online Security Blog: PHA Family Highlights: Zen and its cousins

https://security.googleblog.com/2019/01/pha-family-highlights-zen-and-its.html 6/11

Apart from injecting code to read the CAPTCHA, the app also injects its own code

into the system_server process, which requires root privileges. This indicates that the

app tries to hide itself from any anti-PHA systems that look for a speci�c app

process name or does not have the ability to scan the memory of the system_server

process.

The app also creates hooks to prevent the phone from rebooting, going to sleep or

allowing the user from pressing hardware buttons during the account creation

process. These hooks are created using the root access and a custom native code

called Lmt_INJECT, although the algorithm for this is well known.

First, the app has to turn off SELinux protection. Then the app �nds a process id

value for the process it wants to inject with code. This is done using a series of

syscalls as outlined below. The "source process" refers to the Zen trojan running as

root, while the "target process" refers to the process to which the code is injected

and [pid] refers to the target process pid value.

1. The source process checks the mapping between a process id and a

process name. This is done by reading the /proc/[pid]/cmdline �le.

This very �rst step fails in Android 7.0 and higher, even with a root

permission. The /proc �lesystem is now mounted with a hidepid=2

https://4.bp.blogspot.com/-RxtZxkLtbPY/XDkHV48eaDI/AAAAAAAAGy4/CmEPRK4gW2kW3iMpA9xAc27KfdoerBbxACLcBGAs/s1600/image5.png
https://source.android.com/security/selinux/

2019/1/18 Google Online Security Blog: PHA Family Highlights: Zen and its cousins

https://security.googleblog.com/2019/01/pha-family-highlights-zen-and-its.html 7/11

parameter, which means that the process cannot access other process

/proc/[pid] directory.

2. A ptrace_attach syscall is called. This allows the source process to trace

the target.

3. The source process looks at its own memory to calculate the offset

between the beginning of the libc library and the mmap address.

4. The source process reads /proc/[pid]/maps to �nd where libc is located

in the target process memory. By adding the previously calculated

offset, it can get the address of the mmap function in the target process

memory.

5. The source process tries to determine the location of dlopen, dlsym, and

dlclose functions in the target process. It uses the same technique as it

used to determine the offset to the mmap function.

6. The source process writes the native shellcode into the memory region

allocated by mmap. Additionally, it also writes addresses of dlopen, dlsym,

and dlclose into the same region, so that they can be used by the

shellcode. Shellcode simply uses dlopen to open a .so �le within the

target process and then dlsym to �nd a symbol in that �le and run it.

7. The source process changes the registers in the target process so that

PC register points directly to the shellcode. This is done using the ptrace

syscall.

This diagram illustrates the whole process.

2019/1/18 Google Online Security Blog: PHA Family Highlights: Zen and its cousins

https://security.googleblog.com/2019/01/pha-family-highlights-zen-and-its.html 8/11

PHA authors go to great lengths to come up with increasingly clever ways to

monetize their apps.

Zen family PHA authors exhibit a wide range of techniques, from simply inserting an

advertising SDK to a sophisticated trojan. The app that resulted in the largest number

of affected users was the click fraud version, which was installed over 170,000 times

at its peak in February 2018. The most affected countries were India, Brazil, and

Indonesia. In most cases, these click fraud apps were uninstalled by the users,

probably due to the low quality of the apps.

If Google Play Protect detects one of these apps, Google Play Protect will show a

warning to users.

We are constantly on the lookout for new threats and we are expanding our

protections. Every device with Google Play includes Google Play Protect and all apps

on Google Play are automatically and periodically scanned by our solutions.

You can check the status of Google Play Protect on your device:

Summary

https://4.bp.blogspot.com/-jitt76xPaL4/XDkHhXGoQrI/AAAAAAAAGzA/0bqzcQZfKuo0PeNlaoLfHbR8r-2pqoL-wCLcBGAs/s1600/image3.png

2019/1/18 Google Online Security Blog: PHA Family Highlights: Zen and its cousins

https://security.googleblog.com/2019/01/pha-family-highlights-zen-and-its.html 9/11

1. Open your Android device's Google Play Store app.

2. Tap Menu>Play Protect.

3. Look for information about the status of your device.

2019/1/18 Google Online Security Blog: PHA Family Highlights: Zen and its cousins

https://security.googleblog.com/2019/01/pha-family-highlights-zen-and-its.html 10/11

Hashes of samples

https://4.bp.blogspot.com/-iU_M-UFioSg/XDkHuBjEmmI/AAAAAAAAGzI/qTSHjArWcKMvApLDAQ69Ve8VEO-DkIn9wCLcBGAs/s1600/image6.png

2019/1/18 Google Online Security Blog: PHA Family Highlights: Zen and its cousins

https://security.googleblog.com/2019/01/pha-family-highlights-zen-and-its.html 11/11

Type Package name SHA256 digest

Custom ads
com.targetshoot.zombieapocalyps

e.sniper.zombieshootinggame

5d98d8a7a012a858f0fa4cf8d2ed3d5

a82937b1a98ea2703d440307c63c6c9

28

Click fraud
com.counterterrorist.cs.elite.c

ombat.shootinggame

84672fb2f228ec749d3c3c1cb168a1c

31f544970fd29136bea2a5b2cefac6d

04

Rooting trojan com.android.world.news

bd233c1f5c477b0cc15d7f84392dab3

a7a598243efa3154304327ff4580ae2

13

Zen trojan com.lmt.register

eb12cd65589cbc6f9d3563576c30427

3cb6a78072b0c20a155a0951370476d

8d

Labels: android security

Post a Comment

Create a Link

No comments :

Links to this post

  

Google · Privacy · Terms

https://security.googleblog.com/
https://security.googleblog.com/2019/01/google-public-dns-now-supports-dns-over.html
https://security.googleblog.com/search/label/android%20security
https://www.blogger.com/comment.g?blogID=1176949257541686127&postID=7314979305146341408&isPopup=true
https://www.blogger.com/blog-this.g
https://www.google.com/
https://www.google.com/policies/privacy/
https://www.google.com/policies/terms/

