

RZ 3933 (# ZUR1810-003) 10/01/2018
Computer Science 14 pages

Research Report

Let’s Not Speculate: Discovering and Analyzing Speculative

Execution Attacks

Andrea Mambretti1, Matthias Neugschwandtner2, Alessandro Sorniotti2, Engin Kirda1,

William Robertson1, Anil Kurmus2

1Northeastern University

Boston, MA

USA

2IBM Research – Zurich

8803 Rüschlikon

Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

1

Let’s Not Speculate: Discovering and Analyzing
Speculative Execution Attacks

Andrea Mambretti∗, Matthias Neugschwandtner†, Alessandro Sorniotti†, Engin Kirda∗,
William Robertson∗, Anil Kurmus†

∗Northeastern University
{mbr, ek, wkr}@ccs.neu.edu

†IBM Research
{eug, aso, kur}@zurich.ibm.com

Abstract—Speculative execution attacks exploit vulnerabilities
at a CPU’s microarchitectural level, which, until recently, re-
mained hidden below the instruction set architecture, largely un-
documented by CPU vendors. New speculative execution attacks
are released on a monthly basis, showing how aspects of the so-far
unexplored microarchitectural attack surface can be exploited. In
this paper, we generalize speculative execution related attacks and
identify common components. The structured approach that we
employed helps us to identify potential new variants of speculative
execution attacks. We explore one such variant, SPLITSPECTRE,
in depth and demonstrate its applicability to a real-world scenario
with the SpiderMonkey JavaScript engine. Further, we introduce
SPECULATOR, a novel tool to investigate speculative execution
behavior critical to these new microarchitectural attacks. We
also present our findings on multiple CPU platforms.

I. INTRODUCTION

A developer’s view of the CPU when writing a low-level
program is defined by the CPU’s instruction set architecture
(ISA). The ISA is a well-defined, stable interface the developer
can use to access, and change the architectural state of a
CPU. The software is in full control over memory, registers,
interrupts and I/O. At the same time, the CPU has a lower-
level state of its own – the extra-architectural state of the
microarchitecture, commonly referred to as the microarchi-
tectural state. In general, the ISA provides no direct access
to the CPU microarchitecture, allowing the microarchitecture
to evolve independently, while keeping the programming in-
terface stable. The microarchitecture of a CPU is subject to
frequent changes and is different among vendors. A CPU’s
microarchitecture typically also implements security controls,
such as process isolation.

Recent works [46], [25], [29] have shown how security
controls can be bypassed by submitting carefully crafted
inputs at the level of the ISA interface. These attacks exploit
undocumented behavior at the microarchitectural level, and
have been discovered through reverse engineering and trial-
and-error. The full breadth of this class of attacks is not
entirely understood, owing to the fact that details about the
microarchitectural level of modern commercial CPUs are not
publicly available. The research community cannot provide
complete answers to questions about the existence of new
attacks and the effectiveness of defenses.

We propose a two-pronged strategy towards this objective:
the first prong is a technique to classify this family of attacks

that we refer to as Speculative Execution Attacks (SEAs). The
classification serves to highlight the different phases of the
attacks, what instructions or sequence thereof are involved at
each phase, which privilege level is requested/involved, and
which principal requests its execution (victim or attacker). A
Cartesian product of the possible variants of all constituent
parts can then be used to construct a set of candidate attacks.
Verifying whether a candidate attack is viable is not straight-
forward. Owing to the aforementioned lack of documentation,
the verification step must be an empirical one – the attack
must be prototyped and its effectiveness validated against
a test machine. A negative test result does not constitute
a sufficient reason to discard the candidate, as the failure
might be attributable to a different set of undocumented
microarchitectural aspects. This phase can be aided if the
appropriate tooling and automation is available. Unfortunately,
none is available to date. This observation justifies the second
prong of our strategy, a tool that we call SPECULATOR. This
tool supports the validation of the candidate attack set, and
the discovery of undocumented microarchitectural features that
influence their outcome.

In this paper, we describe our classification approach and
SPECULATOR in detail. We show the effectiveness of these
approaches by describing their usage to reveal a new variant of
Spectre v1 [25], which we call SPLITSPECTRE. SPLITSPEC-
TRE requires a smaller piece of vulnerable code available in
the victim’s attack surface compared to the original attack,
making it a potentially pernicious vulnerability.

Our paper makes the following contributions:
• A new approach of classifying and decomposing specu-

lative execution attacks to understand existing SEAs and
identify new ones.

• A new performance counter-based method and tool,
SPECULATOR, to empirically verify candidate SEAs.

• A novel variation on Spectre v1, SPLITSPECTRE, requir-
ing a smaller piece of vulnerable code available in the
victim’s attack surface.

II. DISSECTING SPECULATIVE EXECUTION ATTACKS

Speculative execution attacks (SEAs) exploit a new class of
vulnerabilities, targeting a particular microarchitectural CPU
design with specially crafted software. These attacks leverage
known attack vectors such as side channels, but go much

2

further by combining them with vulnerabilities at the mi-
croarchitectural level. Numerous variants of SEAs have been
disclosed since the beginning of 2018. In this section, we
propose a general definition and analysis of SEAs with the aim
of clearly distinguishing SEA variants in order to motivate and
guide the analysis of new attacks and defenses in this area.

Before delving into the dissection of SEAs, we need to
distinguish SEAs from the more general category of out-of-
order execution attacks. Spectre v1 and v2 [46], [25] are
the first discovered SEAs, with Spectre v1.1 [24], Spectre
v4 [21], NetSpectre [7] and Netspectre-AVX being follow-ups.
In contrast, attacks such as Meltdown [29], Spectre v3a [8],
Foreshadow [40] and Foreshadow-NG [43] do not rely on
speculative execution behavior, and may be classified in the
more general category of out-of-order execution attacks. Since
this paper focuses on analyzing speculative execution, we have
opted to leave them out.

A. Attack scenarios, Privilege boundaries

SEAs, much like side channel attacks, can be performed in
a variety of scenarios involving one victim and one attacker
thread. The notion of thread here is in the general, hardware-
related sense (e.g. VMM thread, guest thread, (un)-sandboxed
thread, or user/kernel thread). These two threads run with
different privileges, with the attacker thread typically running
with a lower privilege. There can also be scenarios where both
threads are at the same privilege level, but have access to
different data. In all cases, however, a boundary separating
attacker and victim contexts resides between the two threads.

In addition, the two threads are in temporal or spatial co-
residence, as well as in spatial and temporal proximity. An
example of spatial co-residence is two threads running on the
same hardware thread, one closely after the other (i.e. temporal
proximity) – even on a machine not supporting simultaneous
multi-threading (SMT). An example of temporal co-residence
is two SMT threads (hyperthreads in Intel nomenclature)
running at the same time, influencing each other. These are
in spatial proximity because they run on the same core.

B. SEA Phases

For our generalization of SEAs, we decompose them into
four phases, and describe how existing and new attacks fit into
these categories.

Ê Prepare side channel: In this phase, the CPU performs
operations that will increase the chances of the attack
succeeding. For instance, the attacker can prime caches
to prepare for a prime-and-probe [38] cache side channel
measurement, make sure important target data is flushed,
or ensure that the attacking thread and victim thread are
co-located.

Ë Prepare speculative execution: In this phase, the CPU
executes code that will allow speculative execution to
start. This is code that is typically executed within the
context of the victim.

Ì Speculative execution start: In this phase, the CPU ex-
ecutes an instruction whose outcome decides the next
instruction to be executed, such as a conditional branch

instruction. Between the time window where this in-
struction is issued and when it is retired, modern CPUs
guess the outcome of the branch to avoid stalling the
pipeline, and execute code speculatively. This is known
as speculative execution [27].

Í Speculative execution, side channel send: In this phase,
the CPU executes (but not necessarily retires) instructions
that will result in a micro-architectural state change.

Î Side channel receive: In this phase, the CPU executes
instructions that transform the micro-architectural state
change that occurred in the previous step into an archi-
tectural state change.

C. Privilege boundaries and attack impact

The core element that turns speculative execution into an
attack is the breach of a privilege boundary that is estab-
lished through hardware isolation support by the CPU. These
privilege boundaries typically aim to provide confidentiality
and integrity of the data residing within the boundary (i.e.
preventing data from being read or modified directly from
outside the boundary). All accesses to such data are mediated
by code running within the privilege boundary, and that code
may only be invoked from a lower privilege through well-
defined entry points.

In the case of currently known SEAs, the attacker’s aim is
limited to breaching confidentiality of data residing beyond the
privilege boundary by either accessing arbitrary data or leaking
specific metadata, such as pointer values, of the running
program. In addition, the currently known privilege boundaries
that can be bypassed by speculative execution are:

• kernel vs. user-mode code
• hardware enclave (SGX) vs. user-mode or kernel-mode

code
• sandboxed code in the same process, for example

JavaScript JIT code
• processes-to-process boundary
• remote node to local node boundary
We note that code at each SEA phase previously described

can potentially be run either in the higher privileged mode
(victim-provided code) or lower privileged one (attacker-
provided code). We show later in the paper that this insight
leads to a new Spectre v1 variant.

D. Classification of vulnerabilities

We now qualify existing attacks according to our SEA
categorization. In Table I, we specify for each phase of each
attack the type of instruction processed by the CPU, and
whether that instruction is running in high-privilege (}) or
low-privilege mode (-). For instance, the Spectre v2 BPF-
based exploit [46] uses a prime-and-probe side channel (phases
Ê and Î) and trains the branch target buffer (phase Ë). All
these phases are performed by attacker-provided, low-privilege
code.

This way of categorizing SEA attacks can be used to
reveal potential new variants, either by finding another type
of instruction for a given phase, by combining two different

3

variants, or by switching the required privilege level. To
illustrate: Netspectre uses an evict-and-reload [7] strategy for
its side channel, which could well be adapted to v1, v2, v1.1,
RSB and for NetSpectre-AVX. With this in mind, there may be
little benefit in doing so, as evict-and-reload side channels tend
to be noisier than prime-and-probe side channels. Similarly,
one can think of other types of side channels that can be used
in SEAs.

Beyond simply adapting a new side channel for existing
attacks, we find that the privilege level for Í in Spectre v1
can be switched, resulting in a new variant which we call
SPLITSPECTRE and examine in more detail in the following
section. We focus on a v1-based example in this paper as we
found it to be the most promising. However the same idea can
be equally applied to Spectre v2, Spectre v1.1, and Spectre
RSB attacks.

E. Running example and new attack: SPLITSPECTRE

In Spectre v1, the victim code that is executed speculatively
(“gadget”) consists of three components: i) a conditional
branch on a variable, typically a length check, ii) a first array
access that uses the variable from the conditional branch as
an offset, and iii) a second array access that uses the result
of the first array access as an offset If the conditional branch
triggers speculative execution of the following array accesses
(phase Ì), the first array access may access an out-of-bounds
memory region, revealing the contents of this region through
a side channel (phase Í) by measuring the access time to the
second array after executing the gadget (phase Î).

Although Spectre v1 is powerful and does not rely on SMT,
it requires such a gadget to be present in the victim’s attack
surface. Google Project Zero writes in their original blog
post on Spectre v1 [46] that they could not identify such a
vulnerable code pattern in the kernel, and instead relied on
eBPF to place one there themselves.

In this point lies the strength of our new Spectre v1 variant,
SPLITSPECTRE. As its name implies, it splits the Spectre v1
gadget into two parts: one consisting of the conditional branch
and the array access (phase Ì), and the other one consisting of
the second array access that constitutes the sending part of the
side channel (phase Í). This has the advantage that the second
part, phase Í, can now be placed into the attacker-controlled
code. It is more likely that an attacker finds such gadgets,
thereby alleviating one of the main difficulties of performing
a v1 attack. Furthermore, the attacker can choose to employ
amplification of a v1 attack by reading multiple indices of the
second array to deal with imprecise time sources.

Figure 1 compares the regular Spectre v1 with our split
version. As shown in the figure, the speculation window needs
to be sufficiently large such that it still covers the second
part. We define the speculation window (short for speculative
execution window) as the time interval between the event that
triggers speculative execution, e.g. a branch condition, and
the point in time when it is resolved and the speculatively
executed instructions are either retired or rolled back. The
speculation window is measured in cycles and determines
how many instructions of a given sequence are speculatively

speculation

window

Attacker Victim

train branch predictor

flush cache

victim(i)

if (i < sizeof(array1)

 j = array1[i]

 v = array2[j]

for (i in sizeof(array2))

 time(array2, i)

(a) Regular Spectre v1. The gadget requires two dependent array
accesses in the victim’s attack surface.

speculation

window

Attacker Victim

train branch predictor

flush cache

victim(i)

if (i < sizeof(array1)

 j = array1[i]

v = array2[j]

for (i in sizeof(array2))

 time(array2, i)

(b) Split Spectre v1. The second, dependent array access from a
regular v1 gadget moves to the attacker code.

Fig. 1: A comparison of regular Spectre v1 and SPLITSPECTRE.
While SPLITSPECTRE only requires a simple array access, the
speculation window needs to be sufficiently large to contain both
the gadget and the second array access exercised by the attacker.

executed. The number of instructions of a given sequence that
can be speculatively executed at a given time also depends on
the CPU’s microarchitecture. For example, some instructions
are more “expensive” in the sense that they are split into a
number of µops, and thus take a long time to execute. Also,
the combination of instructions in a sequence affects how fast
they execute: similar instructions might lead to congestion on
the execution ports, as they require similar execution units.

The speculation window caps the maximum number of
instructions executed between the two parts. Extending the
length of the speculation window is an instrumental part in
extending the capabilities of a speculative execution attacker
and the reach of a SPLITSPECTRE attack. In the course of
the paper, we show how we use SPECULATOR to evaluate
SPLITSPECTRE and speculative execution aspects relevant to
its feasibility.

III. SPECULATOR

Speculative execution is not well-documented compared to
other features of modern CPUs. Being part of the microar-
chitecture, its implementation details are hidden behind the
ISA and subject to optimization, which manufacturers keep to
themselves.

4

Attack Ê Prepare SC Ë Prepare SE Ì SE start Í SE SC send Î SC receive

Spectre v1 [25], [46] Prime caches - Train branch predictor } Compare } Load } Probe caches -
Spectre v2 [25], [46] Prime caches - Branch target injection - Indirect branch } Load } Probe caches -
Spectre v1.1 [24] Prime caches - Train branch predictor } Compare } Load† } Probe caches -
Spectre RSB [26] Prime caches - Poison RSB - Return } Load } Probe caches -
NetSpectre [7] Evict caches } Train branch predictor } Compare } Load } Transmit gadget: reload }
NetSpectre-AVX [7] Reset AVX } Train branch predictor } Compare } AVX } Transmit gadget: AVX }
SPLITSPECTRE (new) Prime caches - Train branch predictor } Compare } Load - Probe caches -

Table I: Classification of Speculative Execution Attacks. -: code provided by the attacker, running in low privilege; }: code provided by
the victim, running in high privilege; SE: speculative execution; SC: side channel; † reached through speculative buffer overflow, attacker
chosen code.

However, understanding the internals of speculative exe-
cution is key to comprehending the limits of SEAs, and to
designing adequate mitigations and defenses against SEAs. For
this reason, we have designed and implemented SPECULATOR,
a tool whose purpose is to reverse-engineer the behavior
of different CPUs in order to build a deeper understand-
ing of speculative execution. SPECULATOR aggregates the
relevant sources of information available to an observer of
speculative execution, chief among them CPU performance
counters and model-specific registers, so that the behavior of
different code snippets can be observed from a speculative
execution standpoint. In this section, we describe the design
and implementation of SPECULATOR.

A. Performance Monitor Capabilities

Modern CPUs provide relevant information through the per-
formance counter interface. This interface is offered by most
manufacturers, and it exposes a set of registers (some fixed and
some programmable) that can be used to retrieve information
on various aspects of the execution. Through these registers,
counters for events or duration related to microarchitectural
state changes such as cache accesses, retired instruction, and
mispredicted branches, are made available to the developer.
Events are manufacturer- and architecture-specific. This inter-
face was originally made available to provide a method for
developers to improve the performance of their code. The
interface is typically used as follows: through a setup step,
developers can choose which events will be measured by
programmable counters out of a wide set of supported ones.
Measurements can be started and stopped programmatically in
order to carefully control the events of which precise sequence
of instructions is being measured. Setting up, starting, and
stopping measurements often requires supervisor mode (ring 0
in x86 nomenclature) instructions, whereas accessing counters
is usually available in user mode.

SPECULATOR builds on top of performance counters to
observe the nature and effects of speculative execution. One
challenge with this approach is that the performance counters
interface was not designed with this objective in mind. One of
the contributions of this paper is the identification of effective
ways of using the interface, and a useful set of counters to
accurately infer the behavior of speculative execution.

B. Objectives

The main objective of SPECULATOR is to accurately mea-
sure microarchitectural state attributes associated to the spec-
ulative portion of the execution of user-supplied snippets of
code. Accuracy refers to the degree with which the tool is
capable of isolating the changes to the microarchitectural state
caused by the snippet being analyzed from that of the tool itself
and the rest of the system (e.g. the OS or other processes).
An incomplete list of SPECULATOR observables are 1) which
parts of the snippet are speculatively executed, 2) what causes
speculative execution to start and stop, 3) what parameters
affect the amount of speculative execution, 4) how do spe-
cific instruction affect the behavior of speculative execution,
5) which security boundaries are effective in the prevention of
speculative execution, and 6) how consistently CPUs behave
within the same architecture and across architectures and
vendors. The creation of a new tool is justified because none
of the existing ones, such as perf events [14] or Likwid [35],
provide the required information with sufficient accuracy.

Perf events has two modes of operations, sampling and
counting. During sampling, there is no way to have precise
quantitative information about code execution, and therefore
it is not suitable for our purpose. When evaluating perf events’
counting mode, we experienced for very small snippets a
certain level of overhead (in the order of 500 µops). This
overhead was caused by the perf event design decision of
integrating all its operations (e.g. start counters, stop counters)
in the kernel. Since the test snippets are 20-30 instructions
long on average, this overhead completely prevents inferring
any kind of relevant behavior.

Likwid operates instead in user space just as SPECULATOR,
instrumenting the counters through the MSR register. How-
ever, its design only allows system-wide measurements and
does not provide the same flexibility of handling the counter
as the snippet progresses in its execution.

We also considered other tools and libraries such as Opro-
file [28], Perfmon2 [16], Perfctl [33], and PAPI [36]. Unfortu-
nately, all of these possess either the same issues of measure
inaccuracy or lack of flexibility, or otherwise are outdated
and unmaintained. Performance comparisons among some of
these interfaces are provided by Zaparanuks et al. [45] and
Weaver [42].

Another SPECULATOR objective is to provide tooling for
the generation and manipulation of code snippets. The abil-
ity to inspect individual snippets and snippet groups during

5

speculative execution gives the user the ability to focus on
combinations of instructions that are relevant for specific use-
cases. For instance, during our tests, there were cases such as
inspecting the behavior of clflush where we were interested
mainly in a single snippet behavior. Meanwhile, in other tests,
we were interested in how the behavior of a sequence of
instructions changes with variations in the back-end load. In
this scenario, we were interested in how the measures varied
between a snippet and the following.

Additionally, support for multiple platforms enables the
inference of general facts about speculative execution.

C. Design and Implementation

Figure 2 describes the architecture of SPECULATOR and its
three main components: a pre-processing unit, a runtime unit
called the Monitor, and a post-processing unit.

The task of the pre-processing unit is to compile the
provided input into the appropriate execution format, and to
introduce the instrumentation required by the performance
monitor interface to be able to observe the value of the selected
set of hardware counters. Input can be provided as a snippet
of C or assembly code, or as a template for the generation
of code snippets. Code snippets are generated from templates
in an incremental fashion, resulting in the output of multiple
snippets with an increasing number of instructions taken from
a pre-compiled JSON list. Each instruction is inserted by
the SPECULATOR snippet generator in the specific location
defined in the source template (Step 1 in Figure 2). The
introduction of such “incremental” snippets is justified by the
fact that the addition of a single assembly instruction may
trigger optimizations that – while preserving the expected
program semantics – alter the behavior of the CPU at a
microarchitectural level and affect the nature of speculative
execution. Having incremental snippets helps to verify when
optimizations are triggered and take them into account during
the analysis of the results.

After the generation of the executable (also referred to as the
test application), the SPECULATOR runtime is invoked on each
of the generated outputs (Step 2). To ensure that the Monitor
does not perturb the measurements, the process executing the
snippet and the monitor are pinned on different cores. Monitor
is responsible to configure the counters on the core used by the
test application (Step 3). As previously mentioned, there are
many programmable counters that can be used so we provide
a configuration file that can be loaded into SPECULATOR to
easily switch among them.

Once the Monitor has set up the environment, it loads and
executes the snippet in a separate process, and waits for it to
complete (Step 4). The test application prologue and epilogue
will interact with the environment created by the Monitor,
resetting, starting and stopping the counters as needed. The
counters related to the core where the test application runs
are stopped by the test application just before termination.
When the test application terminates, the Monitor will be
signaled by the Operating System. At this point, the Monitor
can retrieve the values of the counters from the core where the
test application runs (Step 6) and store them in a result file.

The Monitor can be configured to run a specific test N times.
In this case, the result file will contain the values of each run.

Once the tests results are collected from the Monitor,
they are handed to the post-processing unit (Step 7). This
unit aggregates the results from multiple runs by computing
statistics (e.g. mean and standard deviation) and by removing
clear outliers.

D. Triggering Speculative Execution

The user of SPECULATOR supplies as input a code snippet
to determine how the CPU behaves when speculative execution
takes place. We note that in the absence of branch mispredic-
tion, instructions that are speculatively executed will eventu-
ally retire and there should be no undesired microarchitectural
side-effects. The more interesting case for the SPECULATOR
user is a snippet containing a branch, or other speculative
execution trigger, that the CPU does not predict accurately,
leading to the speculative execution of instructions that will
not retire. In this scenario, SPECULATOR helps the user detect
which instructions the CPU executed and how they influenced
the microarchitectural state.

In order to automate the generation of test cases, SPECULA-
TOR provides the user with a template, described in Figure 3.
The template is used as follows: the user supplies a snippet,
expecting i) it to be speculatively executed, ii) that none of
its instructions will retire, and iii) that SPECULATOR will
report counters relating to its execution. In order to achieve
this, the template prefixes the snippet supplied by the user
with a branch instruction. The template begins with a setup
step that aims to train the branch predictor not to take that
branch. After the branch predictor is trained not to take the
branch, the program state is set to require the branch to be
taken to ensure that the snippet will be speculatively executed
and that none of its instructions will retire. The template
then starts the performance counters that were previously
setup by the Monitor and executes the branch, after which
it stops performance counters. In order to prolong or shorten
the speculative execution of the user snippet, the condition
variable of the branch can be placed in registers or memory.
On the microarchitectural level, a variable placed in memory
can also be cached in one of the levels of the cache hierarchy.

E. Speculative Execution Markers

In the context of SPECULATOR we are mostly interested in
determining the behavior of the CPU when instructions that are
speculatively executed do not retire. A first natural question is
whether non-retired instructions were speculatively executed
at all and, if so, how many of them. An accurate detection of
these events is (perhaps surprisingly) not trivial. Indeed, the
CPU strives to undo most observable architectural side-effects
from non-retired speculatively executed instructions. However,
as we know from the Spectre and Meltdown works [25],
[29], not all side effects are undone. One possible approach
to detect non-retired speculative execution would be to rely
on the side-channels exploited in these works. This approach
has several shortcomings: it has a relatively low single-run

6

PRE-PROCESSING

Snippet
Generation

TemplateInstructio
list

Tests

CPU N

SPECULATOR
MONITOR

Speculator
con�g

CPU 0

Test
Execution

PMC
Read

RUNTIME POST-PROCESSING

Raw

Measurements

Aggregate Results

Final
Report

PMC
Init

1

2

3

4 5

6

7

Fig. 2: The architecture of SPECULATOR. A template with the speculative execution trigger and a list of instructions to be speculatively
executed are the input to the code generation. The code snippets are run repeatedly under supervision of the speculator monitor, which
captures the event specified in the configuration file. Finally, the measurements are post-processed to present a final report on speculative
execution behavior.

start

counters
branch

snippet

stop

counters

setup

takennot taken

Fig. 3: Flow chart of the experiment template that is used in
SPECULATOR. The setup code brings the branch predictor in a
specific state that will cause the later branch to mispredict and
speculatively execute the code snippet consisting of the instructions.
The speculative execution of the instructions is measured by the
PMC infrastructure, which is triggered by the corresponding start/stop
instructions indicated in the flow chart.

detection accuracy, it is costly to setup and read, and it requires
otherwise unnecessary changes to program observables.

A more effective approach is based on markers of spec-
ulative execution, that is, special instructions or sequences
thereof (which we will refer to as markers) that are detectable
by performance counters even when they do not retire. The
approach requires appending the marker to the snippet which
is fed as input to SPECULATOR, and ensuring that there is no
other occurrence of the marker in the snippet. If SPECULATOR
detects the marker, the detection can be used as proof that the
CPU executed the snippet.

The choice of which markers to use is manufacturer-
and architecture-specific, given that not all CPUs expose the
same set of counters. In general, the marker must cause a
microarchitectural event that is detectable by a performance
counter irrespective of its retired status. For example, counters
that measure issued or executed instructions of a specific type
irrespective of their retired status constitute a good marker.
The selection of which counter to use on a given architecture

requires manual inspection of the CPU architecture program-
mer’s manual. In what follows, we report our findings on the
available markers for Intel processors:
UOPS_EXECUTED.CORE/THREAD counts the number of

µops executed by the CPU. It can be used to report the
exact number of µops that were executed out of the user-
supplied snippet by subtracting the number of µops that retire
in the template (the branch and the instrumentation to stop
performance counters) from the output value of the counter.
This counter is subject to µ-fusion of instructions and does
not count instructions that do not require execution such as
NOP. An exception to that rule is FNOP, which is tracked by
this counter as well.
UOPS_ISSUED.SINGLE_MUL belongs to a group of counters

triggered only by a specific set of instructions. This counter
is fired whenever a single-precision floating-point instruction
that operates on the XMM register is issued. This means that
such an operation can be inserted at the end of the user-
supplied snippet to verify whether this counter is incremented
or not. This counter has been dropped by Intel on most recent
CPUs (e.g. Skylake) and therefore its usage is limited across
platforms.

Similarly to UOPS_ISSUED.SINGLE_MUL,
UOPS_ISSUED.SLOW_LEA is triggered by only a specific set
of instructions. It counts LEA instructions with three source
operands (e.g. lea rax, [array+rax*2]). Unfortunately,
certain operations such as clflush are considered by the
CPU as SLOW_LEA operations, so extra care must be taken
to subtract any number of those present outside of the
user-supplied snippet.
LD_BLOCKS.STORE_FORWARD is incremented for each store

forward that result in a failure. An example of a sequence that
triggers this kind of situation is shown in Listing 1.

The following markers are available on the AMD Zen
architecture:
DIV_OP_COUNT, counting the number of executed div

7

Listing 1: Failed store forward example
1 mov DWORD[array], eax
2 mov DWORD[array+4], edx
3 movq xmm0, QWORD[array]

Architecture CPU Design

Intel Haswell i5-4300U tock
Intel Broadwell i5-5250U tick
Intel Skylake i7-6700K tock
AMD Zen Ryzen 1700

Table II: The CPUs per architecture we use SPECULATOR on. While
Haswell and Skylake are new designs – “tocks” in Intel nomenclature
– Broadwell is a “tick”, a die-shrink of Haswell.

instructions.
NUMBER_ OF_ MOVE_ ELIMINATION_ AND_ SCALAR_

OP_OPTIMIZATION, like LD_BLOCKS.STORE_FORWARD, does
not track the execution of an instruction, but rather the effect
of a certain instruction sequence. In this case, it tracks in how
many cases move elimination was successful.

IV. USING SPECULATOR: THE EXAMPLE OF
SPLITSPECTRE

To find out whether the SPLITSPECTRE attack can be
exploited in practice, we use SPECULATOR to investigate
several speculative execution properties related to it. This
also serves as an example of the study of an attack aided
by the SPECULATOR tool. The results that we uncover are
applicable to SPLITSPECTRE, and are also of independent
interest. Since some of our findings are hardware-dependent,
we also show the differences based on the underlying CPU
architecture (Table II).

A. Out-of-order execution bandwidth

Speculative execution is no different in how it uses the
resources available in both the front- and the back-end of
a CPU compared to regular execution. On Intel platforms,
instructions that have been fetched and decoded into µops by
the frontend are entered in the reorder buffer of the backend.
This buffer contains all µops that are currently “in flight”,
which means they are either ready for execution, are currently
being executed, or have finished execution. The buffer’s name
derives from the fact that on modern CPUs µops are executed
out-of-order. This means they are dispatched to execution units
based on their data flow dependencies, rather than the control
flow of the program. After being executed, they remain in
the reorder buffer until they are retired. Retirement of µops
happens at an assembly-instruction granularity and in-order,
honoring the control flow of the program. When µops are
retired, the outcome of their computation is committed to the
program’s state.

The size of the reorder buffer is a natural upper bound
on the length of a sequence of instructions that can be
speculatively executed. That is, the reorder buffer would hold
the branch instruction that triggered speculative execution plus

the instructions of the code path being speculatively executed.
The branch instruction is the first one that is retired in-order,
potentially causing all other µops in the buffer to be canceled
in case of misprediction. If the branch instruction takes time
to retire, e.g. because it depends on a compare that requires
a slow memory access, chances are higher that the reorder
buffer is filled with µops that are speculatively executed than
for a branch that retires quickly. If the reorder buffer is full,
the whole CPU back-end stalls.

A large reorder buffer is beneficial for SPLITSPECTRE and
most attacks that exploit speculative execution because it lets
a larger amount of instructions be speculatively executed,
enhancing the capabilities of a speculative execution attacker.
While the size of the reorder buffer is typically a known at-
tribute of a CPU, we decided to empirically verify this number
to show how precise measurements taken by SPECULATOR
are. In our experiment, we use the UOPS_EXECUTED.CORE

counter (see Section III-E). Since the counter operates at the
granularity of a core, we disable SMT to reduce the noise
caused by Hyperthreads that are scheduled on the same core.
We also use the BR_MISP_RETIRED counter, which counts the
number of mispredicted, retired branch instructions.

When relying on the count of executed µops to measure
the reorder buffer size, we need to keep in mind that the
µops actually need to execute before the branch that triggered
speculative execution is retired. This means we need instruc-
tions that execute quickly to achieve maximum throughput.
Since “regular” instructions would easily saturate the available
execution ports and units, we pick the NOP instruction. NOP is
decoded into a single µop, which occupies a single slot in the
reorder buffer. It does not actually execute and thus neither
requires an execution unit nor is it captured by the counter
that measures executed µops. We thus put an arbitrary regular
instruction as a marker at the end of the NOP-sled, increasing
the latter in size for each test generated. When running this test
with SPECULATOR, we expect to measure a constant amount
of µops executed up to the point, where the NOP-sled takes up
all slots in the reorder buffer and the terminating instruction
is no longer speculatively executed. Indeed, the results match
our expectation: as can be seen in Figure 4, the number of
executed µops is constant up until 188 NOPs on Broadwell
and 220 NOPs on Skylake. In addition to the NOPs we also
need to account for the branch instruction, taking up two slots
in the reorder buffer as well as the marker instruction, taking
up yet another two entries. In total, this is in line with the
specifications published by Intel, which state a reorder buffer
size of 192 entries for Broadwell and 224 entries for Skylake.

Interestingly, the number of executed instructions differs for
the architectures: it is 34 and 32 for Broadwell and 32 to
30 for Skylake, in spite of the code being exactly the same.
Presumably, this is caused by extended µop-fusion introduced
as optimization on Skylake. Fused µops count as a single µop.

AMD’s Zen platform has a construct similar to Intel’s
reorder buffer: the retire queue. Every µop that has entered the
backend and not been either retired or canceled takes a slot
in this queue. Our Ryzen CPU does not feature a counter for
executed µops, so we can only provide a measurement based
on our marker instruction in this case. The marker instruction,

8

0 30 60 90 120 150 240188 220
number of NOPs

30

31

32

33

34

uo
ps
 e
xe

cu
te
d

Skylake
Broadwell

Fig. 4: Reorder buffer size test results on Broadwell and Skylake.
Since the marker instruction is no longer executed for a sufficiently
large number of NOPs, the number of executed µops drops at the size
of the reorder buffer.

which takes up four µops in this case, is executed up until 186
NOPs. This is in line with the size of the retire queue, which is
specified to have 192 entries (= 186+2+4). Interestingly, the
speculation window seems to be halved when we switch off
SMT: we recognize execution of the marker instruction only
up to 91 NOPs.

B. Nesting Speculative Execution

So far, our approach to extend the speculation window
was based on placing the value used to evaluate the con-
ditional branch in a memory region that has been flushed
from the cache. Next, we use not just one, but multiple
conditional branches to investigate whether this results in a
longer speculation window. We use SPECULATOR to evaluate
the effectiveness of the approach. This experiment has multiple
potential outcomes: given two nested branches, an outer and
an inner one, either i) the inner branch is not speculatively
executed until the branch condition on the outer branch is
resolved, or ii) speculative execution continues to the inner
branch and beyond. In the second case, we are interested in the
speculative execution behavior if the inner branch is resolved
while the result of the outer one is still pending.

We design our experiment with three nested conditional
branches, outermost to innermost, with the branch conditions
being independent of one another. The conditions are set up
with decreasing complexity, such that the outermost will take
longest to resolve. We achieve this by involving an uncached
value that is subject to multiple expensive operations (divs)
in the outermost branch condition, a simple uncached value
in the middle branch condition, and a cached value in the
innermost branch condition. As usual, we train the branch
predictor for all branches in the setup phase such that it is
going to mispredict all targets in the measurement phase. To
evaluate which code paths are (speculatively) executed, we

repeat the experiment multiple times with marker instructions
placed in the opposite branch target paths.

We performed this experiment on both Broadwell and
Skylake, yielding identical results: in both cases, nested
speculative execution takes place, i.e. speculative execution
continues along the trained branch targets for all branches.
Second, if a nested branch condition is resolved before its
parent branch and a misprediction has occurred, speculative
execution picks up the opposite branch target. If a parent
branch is resolved, all mispredicted code paths, including
nested speculative execution, is canceled. For SPLITSPECTRE
this means that while nested speculative execution takes place,
it does not widen the speculation window.

C. Speculative execution across system calls

A fundamental aspect of SPLITSPECTRE is that its two
parts are situated on either side of a privilege boundary. As
mentioned in Section II-C, one such boundary isolates user
from kernel mode. We thus investigate whether speculative
execution continues across the context switch from user- to
kernel mode. To this end we design a simple test scenario,
where the speculatively executed snippet issues a system call.
For the system call itself we picked sys_getppid because
of its low complexity – an execution only amounts to 47
instructions. We use the counter for executed µops and tune
it to capture either just µops executed in user mode or kernel
mode.

We performed the experiment on the Broadwell and Skylake
microarchitectures with identical results:

• The number of µops executed in user mode corresponds
to the instructions before the system call and does not in-
crease with additional instructions added after the system
call.

• The number of µops executed in kernel mode does
not increase compared to a baseline measurement taken
without speculative execution of the code snippet.

Thus, we conclude that a system call effectively stops spec-
ulative execution: it stops after the system call returns from
kernel mode. We further conclude that a SPLITSPECTRE attack
across the system call boundary is not feasible on the tested
Intel CPUs.

D. SPLITSPECTRE in SpiderMonkey

Based on the results of our analysis using SPECULATOR,
we mounted a SPLITSPECTRE attack in a real-world setting.
We chose a browser-like setting, where untrusted JavaScript
is executed in a trusted runtime environment, establishing a
privilege boundary. Recall that a V1 gadget consists of a
bounds check and two array accesses, the first one using the
provided index and the second one using the content of the
first array at that position as an index into the second array.
In order to mount a regular Spectre V1 attack, we would
require a complete Spectre V1 gadget available in the in
the JavaScript engine. The intuition behind SPLITSPECTRE
permits us to relax this requirement and only require the
first half of a V1 gadget, i.e. the bounds check and the first

9

array access. The second half of this gadget is provided by
attacker-controlled JavaScript code (Figure 5). The attack can
only work if speculative execution spans across the privilege
boundary from the bounds check in the runtime environment to
the second array access in the attacker-controlled, unprivileged
code.

SpiderMonkey

compiled trace

a = victim(i)

b = array[a]

Javascript code

native function

int victim(i) {

 if (i < array2.len)

 return array2[i];

}

JIT SplitSpectre
Part 2

(attacker controlled)

SplitSpectre
Part 1

(runtime provided)

Fig. 5: A conceptual view of a SPLITSPECTRE attack instance with
JavaScript.

We implemented SPLITSPECTRE on SpiderMonkey 52.7.4,
Firefox’s JavaScript engine. We use the standard configura-
tion parameters and conducted experiments on our Haswell,
Skylake, and Ryzen CPUs.

We start our experiments by introducing a built-in native
JavaScript accessor function to SpiderMonkey’s source code
that returns the content of a pre-allocated array at a given in-
dex. This function is the first part of the speculative execution
gadget that needs to be part of the victim’s attack surface.
To simplify the code, we explicitly flush the bounds of the
array. Our attacker code is an adapted regular V1 PoC code for
JavaScript JIT engines, with just the first array access replaced
by the call to the victim function. The time measurement is
done using the SharedArrayBuffer technique, which reads the
content of such a buffer while it is being incremented in the
background by a web worker that is running in parallel.

The attack works: we leak a string of ten characters with
a success rate of over 80% Table III, and we leak the full
string with a success rate of 10%. Investigating the distance
between the two parts of the speculation gadget, we measure
the distance after 50 training runs of the JavaScript code that
causes Spidermonkey’s tracing JIT to compile an optimized
IonJIT trace implementing the JavaScript code in assembly.
The distance between the bounds check and the second array
access is 43 instructions, which is small enough for the attack
to produce reliable results.

We proceed with our experiments by replacing our native
built-in function with code already present in the Spider-
Monkey source. Our scan for a suitable gadget reveals the
built-in string.charCodeAt() function, which returns the
character code of a string at a given index and is imple-
mented in native code. Internally, string.charCodeAt()

calls string.charCodeAt_impl(), which includes the
bounds check and actual access. Unfortunately, the spec-
ulation window is not large enough for the attack to
work with string.charCodeAt(): It turns out that af-
ter 50 training runs, the distance between the compare in
string.charCodeAt_impl() and the dereference of the

second array in the JIT trace is 90 instructions. An examination
of the extracted execution trace with SPECULATOR shows that
the number of speculatively executed ops reaches a plateau at
around 40 instructions into the trace for Skylake and 27 for
Broadwell (Figure 6).

We also examine the execution trace on an AMD Ryzen
CPU using a marker instruction, since the Zen performance
counters do not feature a generic counter for executed in-
structions. We see the marker instruction being executed for
the full length of the trace. However, the granularity of time
measurement is too coarse-grained to permit a successful read
of the cache side channel. Amplifying the attack by adding
multiple dependent array accesses would extend the trace so
that it no longer fits into the speculation window.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Instructions

34

44

54

64

74

84

94

104

114

124

uo
ps

 e
xe

cu
te

d

Skylake
Broadwell
Successfull attack

Fig. 6: An examination of the SPLITSPECTRE execution trace
between the length check of string.charCodeAt_impl() and
the second array access using SPECULATOR. The plateau of executed
µops at around 27 (Broadwell) respectively 40 (Skylake) instructions
shows that we are not reaching the second array access in speculative
execution despite the total number of µops in the trace being lower
than the capacity of the reorder buffer on both architectures. The
spikes in the plateaus are caused by mispredicted branches in the trace
itself, which lead to nested speculative execution of fast-executing
code paths.

We further optimize the attack by reducing the amount of
code that is executed between the bounds check and the second
access. This was achieved by implementing the second access
and the call to the victim function in web assembly, which
allows even more attacker control over the compiled JIT trace.
However, using WebAssembly actually increases the number
of instructions between the compare and the second access to
107. The reason is that the native call is not made directly
from within the WebAssembly, but additional JavaScript glue
code is invoked.

JIT engine authors have already reacted with countermea-
sures [41], [11] in order to mitigate Spectre V1 in the context
of browsers. These countermeasures mostly address sources
for high-precision timers. Diluting the timing and disabling
homebrew sources such as SharedArrayBuffers mitigate this
version of JavaScript SPLITSPECTRE. However, it remains to
be seen if amplification of the attack’s timing properties make

10

Runs 100

Only highest scoring char 76.6%
1st and 2nd highest scoring char 80.7%
Full string leaked 10%

Table III: Success rates for the SPLITSPECTRE attack on JavaScript.
We perform 100 runs, each run trying to leak a string of 10
consecutive characters. We provide numbers on both the highest and
the second highest scoring characters.

it feasible if only coarse-grained time sources are available.
On top of timing-related countermeasures, the V8 engine

also masks addresses and array indices in JITted code before
dereferences. While this mitigates a standard Spectre V1
attack, it does not help with SPLITSPECTRE, where the bounds
check is actually not exercised in JITted code, but the engine
code itself.

All things considered, our analyses lead us to conclude
that the attack is viable, and that the ability to trigger it in
practice depends on the identified microarchitectural properties
of individual CPU families. We leave a comprehensive analysis
of these properties for the various CPU architectures/models as
an item of future work, which can be aided by SPECULATOR.

V. USING SPECULATOR: MICROARCHITECTURAL
INSIGHTS BEYOND SPLITSPECTRE

We also used SPECULATOR to investigate microarchitectural
aspects beyond the ones directly related to SPLITSPECTRE.

A. Speculation window size

In Section II-E, we defined that the speculation window
size is determined by the clock cycles that it takes until a
speculation trigger is resolved. In this section, we provide our
measurements of the speculation window for the different trig-
gers used in the Spectre v1, v2, and v4 attacks. For measuring
clock cycles, we again leverage the facilities provided by the
PMC of the respective platform. On Intel, a predefined counter
tracks elapsed clock cycles according to the same settings
as the configurable counters. On AMD, the APERF counter
tracks elapsed clock cycles in general.

The theoretical upper limit of instructions that can be
executed during speculative execution is given by the size
of the reorder buffer, which we evaluated in Section IV-A.
In practice, it is also limited by the execution ports and
units available for executing those transactions. Thus, we
also investigate instruction sequences that do not lead to a
bottleneck on those resources during speculative execution.

Conditional branches. Conditional branches are the specu-
lative execution triggers used in Spectre v1 to check for an
out-of-bounds access to an array. The speculation window size
depends on how fast the CPU determines that the actual branch
target differs from the information provided by the branch
target buffer. We place the conditional value that determines
the actual branch target in different locations and involve it
in additional computation to investigate how this affects the
size of the speculation window. As a baseline, we measure how
long the execution of the additional instructions takes. We then

Conditional branch Broadwell Skylake Zen

Register access 14 16 7
Access to cached memory 19 17 9
Access to uncached memory 144 280 321
Mul with register 19 19 2
Mul with cached memory 33 33 8
Mul with uncached memory 154 290 362
Div with register 35 41 17
Div with cached memory 34 39 30
Div with uncached memory 164 306 353

Table IV: Speculation window of a conditional branch depending on
the type of instructions needed to resolve the branch as well as the
placement of the value involved in the condition, measured in cycles.

Indirect branch target location Broadwell Skylake Zen

Register 81 85 25
Cached memory 87 85 31
Uncached memory 248 349 351

Table V: Speculation window of an indirect control flow transfer,
measured in cycles. The speculation window size depends on where
the target of the indirect control flow transfer is stored.

measure how long the execution of the instructions together
with the conditional branch takes. Any difference in the time
it takes the conditional branch to retire reflects the placement
of the variable and the effect of the additional instructions
involved. All measurements are performed a thousand times.
Note that controlling the performance counters involves a
system call. Since system calls stop speculation, we can only
measure how long the retirement of an instruction sequence
takes. Since the measurement technique differs between the
two CPU vendors, results for Intel and AMD cannot be
compared.

Table IV shows the results of this experiment. We see that
complex instructions such as div, which translates to multiple
µops, widen the speculation window. The same is true for a
cache miss, when the CPU needs to fetch the data from main
memory.

At the same time, access to cached memory contributes
little to the speculation window compared to a register access.
Measuring a range from four to twelve cycles, the results
for Broadwell and Skylake are in accordance with Intel’s
performance analysis guide [1] which states four cycles as
the average for an access to L1 and ten cycles for L2.

On AMD, we see even less impact between register and
cached accesses. In addition, adding a complex instruction on
top of an access has a negligible effect on the speculation
window size.

Indirect control flow transfer. Indirect control flow transfers
are the speculative execution triggers used in Spectre v2.
The speculation window size depends on how fast the CPU
determines that the target in the branch history buffer does not
match the actual target. Table V shows the speculation window
sizes depending on the location of the indirect branch target.

Store to load forwarding. Modern CPU designs feature store
and load queues, which capture the effects and dependencies
of corresponding load and store operations before the data is

11

even written to or read from the cache. This infrastructure
allows for efficient store to load forwarding: if an instruction
writes to a certain memory address and a following instruction
reads from that very address, the CPU can leverage the result
of the first instruction, which is written to the store queue,
for executing the second instruction. This avoids unnecessarily
stalling the execution of the second instruction until the first
is retired. In a recent attack, this behavior has been used for
a “speculative buffer overflow” [24].

We are interested in the behavior a failed store to load
forwarding causes. In this case, we deviate from our default
SPECULATOR template and remove the branch instruction.
Instead, we create a snippet with a data dependency that is not
detected by the CPU in a combination with a sequence of store
and load operations that triggers store-to-load forwarding.

Running the snippet in SPECULATOR reveals that store-to-
load forwarding fails and the load instruction is in fact exe-
cuted twice. This means that a failed store-to-load forwarding
also creates a situation similar to speculative execution results
being discarded because of a mispredicted branch, although it
provides a significantly smaller speculation window.

Spectre v4 (a speculative store bypass) makes use of spec-
ulative execution through store-to-load forwarding. For this
trigger we measure a speculation window of 55 cycles on aver-
age on Broadwell. We also measure the speculatively executed
instructions using FNOP, which provides us with an upper
bound for the speculation window in terms of instructions.
We measure an average of 15 µops with a maximum of 23
µops (Figure 7).

0 40 80 120 160
FNOPs injected

95

135

175

215

255

295
uops executed
uops retired

Fig. 7: Speculation window of a store-to-load forward failure,
measured in executed FNOPs on Broadwell.

Max speculation with optimized instruction sequence. Dur-
ing our experiments, we observed multiple situations in which
the CPU back-end stalled. For instance, the CPU could stall
due to exhaustion of execution units for a certain operation
(e.g. MOV, MUL) or, for instance, data dependencies of multiple
operations where one or more data loads caused cache misses.
In a hypothetical scenario, we wanted to verify how many non-
NOP executed µops the CPU speculates within the maximum
time window (e.g. access to uncached memory in combination
with a DIV instruction). Based on the layout of the back-end

of our Broadwell CPU under test, to the best of our abilities,
we crafted an optimized sequence of instructions to account
for the delay of each operation and the available execution
unit. Our tests show that the maximum number of non-trivial
speculated instructions we could achieve was 160, with 187
being the maximum for FNOP.

B. Stopping Speculative Execution

Many instruction set architectures feature an instruction that
stops speculative execution in the sense that no following
instruction is speculatively executed. On x86 (and x86 64),
one such instruction is lfence, short for “load fence”, the
name reflecting its initial purpose of serializing all memory
load operations issued prior to this instruction. In addition
to this behavior, it also works as a barrier for speculative
execution: the operational description in Intel’s manual [5]
specifies that lfence waits on following instructions until
preceding instructions complete.

We verify this behavior using SPECULATOR by creating a
snippet with an lfence instruction followed by an increasing
sequence of regular instructions. As expected, the counter
for executed µops remains constant among the test runs
irrespective of the number of instructions following lfence.

C. Flushing the Cache

The x86 instruction set provides a convenient, dedicated
instruction to cause the CPU to flush the cache line indicated
by a memory address from all caches, clflush. It is very
useful in settings where an attacker can execute assembly
instructions, as it allows easy eviction of data from the cache.

We use SPECULATOR to investigate how clflush behaves
when executed speculatively. To this end we create a snippet
that first flushes the cache line corresponding to a value stored
in memory and then loads the value. This is shown at line 3
and line 19 respectively in Listing 2. We perform two runs,
one where the setup code warms up the cache by loading
the value from memory (line 7) and one where the value is
left uncached. In both tests, within the speculated sequence,
we place a clflush followed by an lfence instruction to
stop the speculation, making sure that the final load is not
executed during speculation as well (line 15). We measure the
execution cycles on both runs, which shows a difference of
over 160 clock cycles between the two settings (Figure 8).
This is a clear indication that while clflush is speculatively
executed, it does not affect the cache until retired.

1 setup
2 .loop:
3 clflush[counter]
4 clflush[var]
5 lfence
6
7 mov eax, DWORD[var] ;cached version
8 lfence ;only
9

10 start_counter
11
12 cmp 12, DWORD[counter]
13 je .else
14
15 clflush[var]

12

16 lfence
17
18 .else:
19 mov eax, DWORD[var] ;final load
20 lfence
21
22 stop_counter
23
24 inc DWORD[i]
25 cmp DWORD[i], 13
26 jl loop

Listing 2: Clflush test snippet structure

Another conclusion we can draw from this experiment is
that in order to make sure clflush is effective, it needs to be
combined with an instruction that stops speculative execution,
such as lfence.

0 50 100 150 200 250 300 350 400
cpu cycles

cached
uncached

Fig. 8: Execution time measurements of a speculative access to
a value in memory, once cached, once uncached. The difference
between the two measurements demonstrates that the speculatively
executed clflush instruction before the access does not actually
affect the cache.

D. Executable Page Permission

Memory page permissions control access to memory regions
at page-level granularity. As we have seen with Meltdown and
Foreshadow, such permission checks might be lazily evaluated
after an instruction is already executed, but before it is retired.
Related work has so far focused on data read or write access
to memory pages. We are interested in execute permissions
enforced by the NX bit, a hardware extension introduced by
modern processors to mitigate the classic textbook stack-based
code injection exploits. If the control flow of a program is
diverted to a page without execute permissions, the processor
will trap into the kernel to handle the fault. This raises the
question whether during speculative execution the permission
is honored or it is possible to execute instructions from a page
without such a permission set.

Our corresponding experiment sets up a branch mispredic-
tion with a following control flow transfer to a memory region
we control the access bits to, essentially testing whether the
data in this memory region is executed. We ensure that the data
from the page is in the L2 cache during speculative execution
and the addresses are in the TLB. The result of the experiment
is that the execute page table permission is honored during
speculative execution by all architectures we examined. This
is even true if an instruction spans over two pages: it will not
be executed if the second page is set non-executable.

E. Memory Protection Extensions

Instead of performing bounds checks purely in software,
Intel’s MPX instruction set extension [34] available on the

Skylake platform provides hardware support for both effi-
ciently keeping track of bounds information associated with
pointers and corresponding spatial memory checks before
dereferencing pointers. Pointer bounds information is stored
in memory and loaded to dedicated registers before it can be
used to check the upper bound using the bndcu and the lower
bound using the bndcl instruction. If a bound check fails, a
#BR exception is raised and the CPU traps into the kernel.

We used SPECULATOR to measure if and how much code
following a bounds check instruction is speculatively executed.
The setup executes the regular code path without the bounds
violation for ten iterations and then fails on a bndcu twice. To
measure the speculative execution window size, we first used
an increasing run of NOPs in conjunction with a terminating
slow LEA marker instruction. In this experiment, we measured
that we speculatively execute the marker instruction for a
sled of up to 122 NOPs. In our second experiment, we
used FNOP instead of regular NOP, which is tracked by the
UOPS_EXECUTED counter. As is shown in Figure 9, in this
case, the number of executed µops increases up to a sled of
22 FNOPs and remains constant beyond.

0 40 80 120 160 200 240
FNOPs injected

482

487

492

497

502

507

512
uo

ps
 e

xe
cu

te
d

Fig. 9: Speculative execution after an MPX bounds violation.

F. Issued vs. Executed µops

All performance counters that address a certain µop group
such that they are suited as isolated markers for speculative
execution count issued µops. Since issued µops are not
necessarily executed, as is the case for the NOP instruction,
we performed a dedicated experiment. We use the template
introduced in Section III-D and generated tests where the code
snippet just contains an increasing number of RIP-relative
load instructions. As Figure 10 demonstrates, the number of
executed µops increases at the same rate as the counter for
slow load effective address instructions, which are load µops
with three sources.

VI. DISCUSSION

SPECULATOR depends on a CPU’s infrastructure to expose
microarchitectural state, in Intel’s nomenclature known as

13

0 10 20 30 40 50 60 70 80 90
number of issued "slow" lea operations

33

43

53

63

73

83

uo
ps

 e
xe

cu
te

d

Fig. 10: Performance counter numbers for an increasing number of
speculatively executed relative load instructions. The graph shows
that the number of issued instructions corresponds to the number
of executed instructions, justifying the use of such instructions as
markers.

PMC. In fact, it depends on the correctness of the information
provided by this infrastructure, as well as the availability to be
able to monitor certain groups of events. While the monitoring
infrastructure itself as well as the ability to track specific
events is different for every CPU architecture, the possibility
to track instructions that have been executed, yet not retired, is
available on all the platforms we investigated. Thus, while the
exact implementation of SPLITSPECTRE might not be directly
transferable without changes to platforms we have not looked
at, the method is.

Besides, SPECULATOR also depends on a properly func-
tioning CPU. Results should be similar among multiple CPUs
of the same architecture, with inconsistencies indicating a
defective unit.

VII. RELATED WORK

Speculative Execution. Optimizing CPU instruction through-
put through speculative execution has been proposed and
implemented in the 1990s [27], [37]. For information about
the microarchitecture of CPUs with respect to out-of-order and
speculative execution, we mostly have to rely on the material
provided by the CPU manufacturers [5], [4], [2]. Unfortunately
this material often just hints at important aspects, not providing
detail on how mechanisms such as the branch predictor actu-
ally work. Agner Fog’s work [17] sheds light on those details,
providing detailed information backed by a substantial amount
of experimental research on the microarchitectural aspects of
CPUs. This information is leveraged in processor simulators
such as gem5 [10].
Cache Side Channels. All Spectre variants including our
new SPLITSPECTRE rely on cache side channels to infer the
memory contents accessed by speculative execution. Cache
side channels have been extensively studied: First, Tromer
et al. introduced both the “evict-and-time” and “prime-and-
probe” techniques to efficiently perform a cache attack on

AES [38]. Prime and probe is a popular technique, which was
also used for certain Spectre variants. “Flush-and-reload” [44]
is a technique that allows for higher precision and is used
in NetSpectre. Recently, other techniques such as “flush-and-
flush” [20] and “prime-and-abort” [15] were presented. Flush
and flush leverages the fact that clflush executes faster in
case of a cache hit. Prime and abort makes use of Intel’s
transactional memory mechanism to detect when an eviction
has happened without the need to probe the cache.

Security Issues. Since the beginning of 2018, three security
issues related to speculative execution known as Spectre and
Meltdown were revealed [46], [29], [25]. CPU vendors reacted
with reports on those issues [22], [19] and how they affected
their CPU architectures. These initial reports were followed by
more security issues, involving further speculative execution
triggers [21], [9], [3] and side channels [18], even affecting
Intel’s virtualization and secure enclave technology SGX [40].
In addition to that, research groups have established remote
Spectre attack vectors over the network [7]. The classic buffer
overflow to overwrite the return address on the stack also has
a speculative execution context twist, as shown in [24], [26].

Mitigations. Apart from the microcode updates shipped by
CPU vendors, certain mitigations against SEAs can be imple-
mented in software. Especially JavaScript engines deployed
mitigations against Spectre v1 such as diluting timing pre-
cision, disabling concurrent threads to prevent homebrew-
timers and masking pointer accesses to prevent speculative
out-of-bounds accesses [11], [41], [6]. Linux has deployed
retpoline [39] in the kernel to mitigate Spectre v2 by trapping
mispredicted indirect branches and the KAISER patches [13]
to protect against Meltdown by separating page tables organi-
zation for user- and kernel space. Also compiler tool chains
have picked up the topic, with LLVM working on introduc-
ing data dependencies on loads that might be speculatively
executed [12], [31] and MSVC adding speculation barrier
instructions such as lfence to the compiled binary code [32].
At the same time, research groups have proposed to address
the issue in silicon, such as adding microarchitectural shadow
structures to the CPU for leakage-free speculation [23] or
exposing the microarchitectural state in the ISA [30].

VIII. CONCLUSION

In this paper, we shed light on security-relevant specula-
tive execution and microarchitectural behavior. We presented
SPECULATOR, a novel tool that allow targeted and precise
measures of microarchitectural characteristics. Using SPECU-
LATOR, we then investigate speculative execution. We study
aspects such as the speculation window for various speculative
execution triggers, which is an important factor for the payload
of a speculative execution attack. We also show which events
stop speculative execution and that some security controls such
as NX are still in effect during speculative execution, while
others do not act as a barrier such as Intel’s MPX bounds
checks.

Based on these findings, we then verified the feasibility of a
new variant of SEA that we call SPLITSPECTRE. We motivated
its importance with new upcoming more powerful families of

14

processors showing how the gap for having a successful real
world attack decreases the longer the CPU is able to speculate.

We plan to release our tool, SPECULATOR, which we used
to investigate speculative execution behavior, as open source.

REFERENCES

[1] Performance Analysis Guide for Intel Core i7 Processor and Intel
Xeon Processors. https://software.intel.com/sites/products/collateral/hpc/
vtune/performance analysis guide.pdf.

[2] Preliminary Processor Programming Reference (PPR) for AMD Family
17h Models 00h-0Fh Processors. http://support.amd.com/TechDocs/
54945 PPR Family 17h Models 00h-0Fh.pdf, 2017.

[3] Analysis and mitigation of speculative store by-
pass. https://blogs.technet.microsoft.com/srd/2018/05/21/
analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/,
2018.

[4] Intel Architectures Optimization Reference Manual. https:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-optimization-manual.pdf, 2018.

[5] Intel Software Developer Manual. https://software.intel.com/en-us/
articles/intel-sdm, 2018.

[6] JIT mitigations for Spectre. https://github.com/Microsoft/ChakraCore/
commit/08b82b8d33e9b36c0d6628b856f280234c87ba13, 2018.

[7] Netspectre: Read arbitrary memory over network. https://misc0110.net/
web/files/netspectre.pdf, 2018.

[8] Rogue system register read. https://software.
intel.com/security-software-guidance/software-guidance/
rogue-system-register-read, 2018.

[9] Speculative store bypass disable, 2018.
[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Computer Architecture News, 39(2), Aug. 2011.

[11] M. Bynens. V8 Untrusted code mitigations. https://github.com/v8/v8/
wiki/Untrusted-code-mitigations, 2018.

[12] C. Carruth. Speculative Load Hardening. https://lists.llvm.org/pipermail/
llvm-dev/2018-March/122085.html, 2018.

[13] J. Corbet. Kaiser: hiding the kernel from user space. https://lwn.net/
Articles/738975/.

[14] A. C. de Melo. The New Linux perf tools. http://www.linux-kongress.
org/2010/slides/lk2010-perf-acme.pdf, 2010.

[15] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen. Prime+abort:
A timer-free high-precision l3 cache attack using intel TSX. In 26th
USENIX Security Symposium (USENIX Security 17), pages 51–67,
Vancouver, BC, 2017. USENIX Association.

[16] S. Eranian. Perfmon2: a flexible performance monitoring interface for
linux. In Proc. of the 2006 Ottawa Linux Symposium, pages 269–288,
2006.

[17] A. Fog. The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers.
https://www.agner.org/optimize/microarchitecture.pdf, 2018.

[18] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation leak-aside
buffer: Defeating cache side-channel protections with TLB attacks. In
USENIX Security Symposium, 2018.

[19] R. Grisenthwaite. Cache Speculation Side-channels. https://developer.
arm.com/-/media/Files/pdf/Cache Speculation Side-channels.pdf,
2018.

[20] D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+flush: A
fast and stealthy cache attack. In J. Caballero, U. Zurutuza, and R. J.
Rodrı́guez, editors, Detection of Intrusions and Malware, and Vulnera-
bility Assessment, pages 279–299, Cham, 2016. Springer International
Publishing.

[21] J. Horn. Spectre v4. https://bugs.chromium.org/p/project-zero/issues/
detail?id=1528, 2018.

[22] Intel. Analysis of speculative execution side channels.
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/
Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf, 2018.

[24] V. Kiriansky and C. Waldspurger. Speculative Buffer Overflows: Attacks
and Defenses. https://people.csail.mit.edu/vlk/spectre11.pdf, 2018.

[23] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. B. Abu-Ghazaleh. SafeSpec: Banishing the Spectre of a
Meltdown with Leakage-Free Speculation. CoRR, 2018.

[25] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre attacks: Exploiting speculative execution. In IEEE Symposium
on Security and Privacy, 2019.

[26] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. B. Abu-Ghazaleh.
Spectre Returns! Speculation Attacks using the Return Stack Buffer.
CoRR, 2018.

[27] B. W. Lampson. Lazy and speculative execution in computer systems.
In ACM SIGPLAN Conference on Functional Programming, 2008.

[28] J. Levon. Oprofile. http://oprofile.sourceforge.net.
[29] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,

J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg.
Meltdown: Reading kernel memory from user space. In USENIX
Security Symposium, 2018.

[30] J. Lowe-Power, V. Akella, M. K. Farrens, S. T. King, and C. J. Nitta.
Position paper: A case for exposing extra-architectural state in the isa.
In Proceedings of the 7th International Workshop on Hardware and
Architectural Support for Security and Privacy, 2018.

[31] O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C. Fetzer. You
shall not bypass: Employing data dependencies to prevent bounds check
bypass. CoRR, 2018.

[32] A. Pardoe. Spectre mitigations in MSVC. https://blogs.msdn.microsoft.
com/vcblog/2018/01/15/spectre-mitigations-in-msvc/, 2018.

[33] M. Pettersson. Perfctr. http://user.it.uu.se/∼mikpe/linux/perfctr/.
[34] S. Ramakesavan and J. Rodriguez. Intel Memory Protection Ex-

tensions Enabling Guide. https://software.intel.com/en-us/articles/
intel-memory-protection-extensions-enabling-guide, 2016.

[35] T. Rhl, J. Eitzinger, G. Hager, and G. Wellein. LIKWID Monitoring
Stack: A Flexible Framework Enabling Job Specific Performance mon-
itoring for the masses. In IEEE International Conference on Cluster
Computing (CLUSTER), 2017.

[36] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting performance
data with papi-c. In Tools for High Performance Computing 2009, pages
157–173. Springer, 2010.

[37] K. B. Theobald, G. R. Gao, and L. J. Hendren. Speculative execution
and branch prediction on parallel machines. In International Conference
on Supercomputing, 1993.

[38] E. Tromer, D. A. Osvik, and A. Shamir. Efficient cache attacks on aes,
and countermeasures. Journal of Cryptology, 23(1):37–71, Jan 2010.

[39] P. Turner. Retpoline: a software construct for preventing branch-target-
injection. https://support.google.com/faqs/answer/7625886.

[40] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution. In USENIX Security Symposium, 2018.

[41] L. Wagner. Mitigations landing for new class of
timing attack. https://blog.mozilla.org/security/2018/01/03/
mitigations-landing-new-class-timing-attack/, 2018.

[42] V. M. Weaver. Linux perf event features and overhead. In The 2nd
International Workshop on Performance Analysis of Workload Optimized
Systems, FastPath, volume 13, 2013.

[43] O. Weisse, J. V. Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom. https:
//foreshadowattack.eu/foreshadow-NG.pdf, 2018.

[44] Y. Yarom and K. Falkner. Flush+reload: A high resolution, low noise,
l3 cache side-channel attack. In Proceedings of the 23rd USENIX
Conference on Security Symposium, SEC’14, pages 719–732, Berkeley,
CA, USA, 2014. USENIX Association.

[45] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of performance
counter measurements. In Performance Analysis of Systems and Soft-
ware, 2009. ISPASS 2009. IEEE International Symposium on, pages 23–
32. IEEE, 2009.

[46] G. P. Zero. Reading privileged memory with a side-
channel. https://googleprojectzero.blogspot.ch/2018/01/

reading-privileged-memory-with-side.html, 2018.

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://support.amd.com/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
http://support.amd.com/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://github.com/Microsoft/ChakraCore/commit/08b82b8d33e9b36c0d6628b856f280234c87ba13
https://github.com/Microsoft/ChakraCore/commit/08b82b8d33e9b36c0d6628b856f280234c87ba13
https://misc0110.net/web/files/netspectre.pdf
https://misc0110.net/web/files/netspectre.pdf
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://github.com/v8/v8/wiki/Untrusted-code-mitigations
https://github.com/v8/v8/wiki/Untrusted-code-mitigations
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://developer.arm.com/-/media/Files/pdf/Cache_Speculation_Side-channels.pdf
https://developer.arm.com/-/media/Files/pdf/Cache_Speculation_Side-channels.pdf
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://people.csail.mit.edu/vlk/spectre11.pdf
http://oprofile.sourceforge.net
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
http://user.it.uu.se/~mikpe/linux/perfctr/
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide
https://support.google.com/faqs/answer/7625886
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf
https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html

	Insert from: "RZ3933_body.pdf"
	Introduction
	Dissecting speculative execution attacks
	Attack scenarios, Privilege boundaries
	SEA Phases
	Privilege boundaries and attack impact
	Classification of vulnerabilities
	Running example and new attack: SplitSpectre

	Speculator
	Performance Monitor Capabilities
	Objectives
	Design and Implementation
	Triggering Speculative Execution
	Speculative Execution Markers

	Using Speculator: the Example of SplitSpectre
	Out-of-order execution bandwidth
	Nesting Speculative Execution
	Speculative execution across system calls
	SplitSpectre in SpiderMonkey

	Using Speculator: Microarchitectural Insights beyond SplitSpectre
	Speculation window size
	Stopping Speculative Execution
	Flushing the Cache
	Executable Page Permission
	Memory Protection Extensions
	Issued vs. Executed ops

	Discussion
	Related work
	Conclusion
	References

